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High-resolution large-eddy simulation is used to investigate the mean and turbulence
properties of a separated flow in a channel constricted by periodically distributed hill-
shaped protrusions on one wall that obstruct the channel by 33% of its height and
are arranged 9 hill heights apart. The geometry is a modification of an experimental
configuration, the adaptation providing an extended region of post-reattachment
recovery and allowing high-quality simulations to be performed at acceptable comput-
ing costs. The Reynolds number, based on the hill height and the bulk velocity above
the crest is 10 595. The simulated domain is streamwise as well as spanwise periodic,
extending from one hill crest to the next in the streamwise direction and over 4.5 hill
heights in the spanwise direction. This arrangement minimizes uncertainties associated
with boundary conditions and makes the flow an especially attractive generic test
case for validating turbulence closures for statistically two-dimensional separation.
The emphasis of the study is on elucidating the turbulence mechanisms associated
with separation, recirculation reattachment, acceleration and wall proximity. Hence,
careful attention has been paid to resolution, and a body-fitted, low-aspect-ratio,
nearly orthogonal numerical grid of close to 5 million nodes has been used. Unusually,
the results of two entirely independent simulations with different codes for identical
flow and numerical conditions are compared and shown to agree closely. Results
are included for mean velocity, Reynolds stresses, anisotropy measures, spectra and
budgets for the Reynolds stresses. Moreover, an analysis of structural characteristics
is undertaken on the basis of instantaneous realizations, and links to features
observed in the statistical results are identified and interpreted. Among a number
of interesting features, a distinct ‘splatting’ of eddies on the windward hill side follow-
ing reattachment is observed, which generates strong spanwise fluctuations that are
reflected, statistically, by the spanwise normal stress near the wall exceeding that of
the streamwise stress by a substantial margin, despite the absence of spanwise strain.

1. Introduction
Flows that involve separation from curved surfaces occur in numerous engineering

applications, in most of which the operational characteristics of the associated
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components are materially sensitive to the details of the separation process. Examples
are stalled wings and turbine blades, fuselages at high incidence, surface-vehicle bodies,
streamlined obstacles, shaped constrictions or obstructions in pipes, highly curved
ducts and jet-engine nacelles in cross-flow. Unfortunately, these flows are also among
the most difficult to compute satisfactorily, whatever computational methodology is
applied. Reynolds-averaged Navier–Stokes (RANS) schemes tend to perform espe-
cially badly, in that they predict widely disparate solutions with different turbulence
models, even if these are variations of the same closure class, and they also generally
display inconsistent performance across any significant range of separated flows
(Manceau & Bonnet 2003; Jang et al. 2002; Wang, Yang & Leschziner 2004).

Among a number of challenging features of separation from continuous and curved
surfaces is the strong spatial and temporal fluctuation of the separation line. The inevi-
table consequence of this process is that the time-averaged turbulent state of the flow
around (or just upstream of) the time-averaged separation line does not scale with the
wall distance in a manner consistent with the assumption of an attached boundary
layer. This disparity has far-reaching implications for statistical closure strategies,
because the state of the flow around the separation line impacts on the characteristics
of the separated shear layer and on the reattachment process. Quite generally, the tur-
bulent structures arising from separation are large, very vigorous and often accom-
panied by periodic components. This causes the whole recirculation region to be
dominated by large-scale energetic eddies with strong deformation and dynamics,
which are ill-described by one-point turbulence models that assume a high degree
of ‘locality’ of turbulence. Another challenge, to any computational methodology, is
the sensitive dependence of the mean reattachment location on that of separation.
For the geometry considered in the present study, simulations with relatively coarse
grids (Temmerman et al. 2003) as well as RANS studies (Manceau & Bonnet 2003)
indicate that a 1% change in the predicted mean separation location goes hand-in-
hand with a 7% change in the reattachment location, with obvious consequences
for the gross flow properties, including pressure recovery. These characteristics imply
that separation from curved surfaces demands, to a much greater extent than in flow
separating from sharp edges, great care in the resolution and modelling of the near-
wall flow, especially around the extensive separation region.

The available information on the fundamental physical processes playing a role in
separation from curved surfaces is very limited. There are, in particular, very few re-
sults on turbulence characteristics and flow structure in the near-wall region within
separation bubbles, the layer just upstream of separation and the immediate post-
reattachment zone. While numerous experimental studies have been conducted on
separated flow, their outcome has been mainly in the form of rather sparse data
on statistical and global flow quantities, which do not provide much insight into the
fundamental mechanisms of separation, reattachment and post-reattachment recovery.
In addition, inevitable experimental limitations, associated with spanwise confinement,
three-dimensional contamination and incomplete streamwise flow periodicity in
configurations that are intentionally designed to be periodic (e.g. sinusoidally shaped
surfaces), introduce significant uncertainties and errors.

Direct numerical simulations (DNS) offer, in principle, a route to information
on separation processes, which experiments cannot provide. This is illustrated, for
example, by the DNS of Alam & Sandham (2000) for suction-induced (laminar) sep-
aration from a flat plate and subsequent turbulent reattachment. However, at higher
Reynolds numbers and in the presence of separation and geometric complexities, DNS
is an extremely costly approach. This is due not merely to the very high resolution
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Figure 1. A two-dimensional slice of the geometry considered in the present paper together
with the constitutive lengths and the coordinate system employed. The grid shown includes
the two ‘halo cells’ on either side in the streamwise direction.

requirements, but also the extremely long integration times that are required to
obtain reliable statistical information in the presence of large-scale and low-frequency
structural features associated with the complex temporal and spatial variations in
the separation and reattachment lines. At higher Reynolds numbers, equivalent to
around 20 000 and above in a plane channel flow, the only economically tenable
approach is to undertake highly resolved large-eddy simulations (LES) in carefully
designed geometries for which any approximations adopted in relation to subgrid-
scale processes and near-wall structure are demonstrably of no consequence to the
accuracy of the quantities of interest. Such simulations not only offer insight into the
physics of separation, but also provide valuable data for a wide range of statistical
quantities against which turbulence closures as well as approximations adopted in the
coarse-grid LES can be assessed. Both objectives are at the heart of the present paper.
Indeed, some of the data contained herein have already been exploited to good effect
in both RANS (Jang et al. 2002; Abe, Jang & Leschziner 2003) and LES studies
(Temmerman et al. 2003). One set of data can be found in the ERCOFTAC database
http://cfd.me.umist.ac.uk/ercoftac (case C81).

The geometry of the flow under consideration is shown in figure 1. It comprises
a channel with periodically arranged hill-shaped constrictions on one wall (referred
to as ‘hills’ henceforth). The simulation domain extends from one hill crest to the
next. The spanwise direction is deliberately prescribed to be statistically homogeneous
so as to secure statistical two-dimensionality. Streamwise periodicity and spanwise
homogeneity thus free the simulations from uncertainties arising from boundary
conditions, except for those at the upper and lower walls. The inter-hill distance is
chosen so as to allow the flow to reattach well upstream of the following hill and
permit some recovery before the acceleration on the windward side of that hill. The
choice of this geometry is discussed in greater detail in § 2.

Simulations related to the present study have been performed on separated flows
over wavy walls, e.g. by Armenio & Piomelli (2000), Henn & Sykes (1999) and
Salvetti, Damiani & Beux (2001), in the context principally of atmospheric fluid
mechanics. In all these studies, which are briefly reviewed in § 2, one objective has
been to improve the understanding of the fundamental mechanisms associated with
separation from curved surfaces. Additionally, the simulations were undertaken to
derive information about the influence of geometric surface features (pitch, height)
on the physical characteristics of the flow above them. Most LES computations for
wavy-wall geometries are insufficiently resolved, however, or are for flows at very low
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values of the Reynolds number. Also, the upper boundary is essentially open (i.e. the
flow is practically unconfined), and the recirculation zone is either small or dictated
by the relatively small hill-to-hill pitch. In contrast, the present geometry provides for
a post-reattachment-recovery domain between successive hills, and the velocity field
is highly resolved, especially in the recirculation zone, as detailed below.

The fact that streamwise periodicity and spanwise (statistical) homogeneity can
be enforced virtually exactly, allows the type of geometry-induced contaminations,
inevitably encountered in experimental studies, to be avoided. This is, self-evidently, an
important advantage in using the simulation data for turbulence-model developments.
On the other hand, some uncertainties arise from the imposition of instantaneous
periodicity, and this calls for careful checks of decorrelation. A further important
feature of the present investigation is that two quite independent simulations have
been undertaken by two collaborating groups, using identical meshes, but different
codes and subgrid-scale models. The high level of agreement of the two simulations
reported herein thus strengthens confidence in their validity.

The remainder of the paper is organized in six sections. In § 2, the choice of geometry
and flow conditions are discussed and justified by reference to previous studies,
present objectives and computational constraints. The computational framework and
the numerical parameters pertaining to the simulations reported later are described
in § 3. Sections 4, 5 and 6 present and discuss different aspects of the results arising
from the simulations. Statistical flow quantities are first covered in § 4. Section 5 then
analyses the implications of instantaneous and unsteady flow features, with emphasis
placed on structural aspects. Section 6 then returns to the statistical description
dealing with spectra, anisotropy maps and two-point correlations. Conclusions are,
finally, presented in § 7.

2. Choice of geometry and previous LES/DNS
This section discusses the motivation and arguments for selecting the present

geometry, first introduced by Mellen, Fröhlich & Rodi (2000) and shown in figure 1.
Throughout this paper, x, y and z identify, respectively, the streamwise, cross-flow and
spanwise Cartesian coordinates. The geometry is akin to one studied experimentally
by Almeida, Durao & Heitor (1993), which has been used as a test-case for an
ERCOFTAC/IAHR workshop (Rodi, Bonnin & Buchal 1995), where a number of
related RANS calculations were presented. The latter geometry consists of periodic
hills of height h and separation Lx = 4.5h in a channel of height Ly = 6.07h. The
Reynolds number, based on the hill height and the bulk velocity, was 60 000. Pre-
liminary LES calculations of this case by the present authors have shown that suffi-
ciently well-resolved simulations would be too costly to undertake, because of the large
channel height and the high Reynolds number. Also, during this ERCOFTAC/IAHR
workshop, it was discovered that the experimental flow did not achieve a fully periodic
state. Finally, because the duct carrying the flow was almost square in cross section,
there were significant sidewall effects and hence significant departures from the two-
dimensional state. For these reasons, it was decided to generate a new (synthetic) test
case, specially designed to meet the objectives described in the Introduction.

Several substantial modifications were introduced to the experimental periodic-hill
configuration of Almeida et al. (1993) in order to make fine-grid LES feasible. First,
the Reynolds number was reduced to allow a near-DNS resolution at the lower wall,
giving insignificant sensitivity to subgrid-scale and wall modelling. This reduction is
not a fundamentally important drawback, as the key features of massively separated
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flows are only weakly dependent on the Reynolds number. The value eventually
chosen was Reh = 10 595, based on hill height and bulk velocity above the hill crest.
Second, while the hill shape of the experimental configuration, having a streamwise
extent of Lh =3.86h, was retained, the inter-hill distance was substantially increased to
Lx = 9h, and the channel height was reduced to Ly = 3.035h, resulting in a Reynolds
number ReLy

= 21 560, based on Ly and the bulk velocity in the unconstricted channel.
The reduction in channel height reduces significantly the number of grid points
necessary. The increase in inter-hill distance enhances the streamwise decorrelation,
permitting reattachment to take place on the plane portion between consecutive hills
and introducing a post-reattachment-recovery region prior to a re-acceleration over
the next hill. Streamwise decorrelation is highly desirable in channel-flow simulations
using periodic streamwise conditions; typically, the length-to-height ratio of the calcu-
lation domain is chosen to be Lx/Ly = π. In contrast to the ‘wavy-terrain’ configura-
tion, reattachment is here not enforced by the proximity of consecutive hills, rendering
the behaviour of the separation region much more sensitive to the quality of the
simulation and the modelling details, and hence presenting a more challenging test
case. In order to limit the computational costs to an affordable amount, the spanwise
extent of the calculation domain was chosen as Lz =4.5h, and periodic conditions
were applied at the spanwise boundaries. The adequacy of this choice is discussed in
some detail in § 3.3.4.

As noted in the introduction, previous simulations akin to the present ones have
been directed towards wavy-terrain geometries. These are characterized either by low
Reynolds numbers or low resolution at high Reynolds numbers, weakly undulating
hills provoking weak separation, or low pitch-to-hill-height values, all of which are
counter to the present objectives. Most of these configurations feature a sinusoidally
shaped lower wall with pitch λ. The simulations focus on the influence of the wavy
wall on the boundary layer above the wave crests, with no significant relaxation
of the disturbed flow between the waves being allowed. DNS computations have
been performed in Maaß & Schumann (1996), De Angelis, Lombardi & Banerjee
(1997) and Cherukat et al. (1998), for h/λ= 0.1. The conditions in these simulations
correspond to the experiments of Hudson, Dykhno & Hanratty (1997) with the
channel height being equal to λ and the Reynolds number based on hill height being
only Reh =676. LES computations at Reynolds numbers not much higher are reported
by Calhoun & Street (2001), Henn & Sykes (1999) and Armenio & Piomelli (2000).
The statistical data obtained from such simulations match the experiment fairly well,
as shown by the compilation of results given by Armenio & Piomelli (2000), but
the Reynolds number in all of these calculations was simply too low for engineering
interest, and re-attachment always occurred on the windward slope of the hills, so
that there was no distinct post-reattachment-recovery region.

At higher Reynolds numbers, DNS is no longer possible, so that only LES can be
carried out. LES of flow over a sinusoidal wall at Reλ =4.2 × 105 were conducted by
Salvetti et al. (2001). Although a very coarse grid was employed in combination with
the no-slip condition, which is a questionable practice, the computed mean-velocity
field was found to agree quite well with the experiments of Gong, Taylor & Dörnbrack
(1996), but no results for turbulence quantities are presented. The influence of wave
slope and Reynolds number was investigated by parameter variations, but a detailed
analysis of the flow in the recirculation region or in the vicinity of the wall is not
given. Henn & Sykes (1999) and Armenio & Piomelli (2000) reported LES results
for the experimental situations studied by Buckles, Hanratty & Adrian (1984), in
which case h/λ= 0.2 and Reh ≈ 4800, the latter being less than one half of the value
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in the present study. Satisfactory agreement of mean flow and turbulent fluctuations
with the experimental data was obtained, although separation was predicted to occur
somewhat too early, and the separation bubble was too long as a consequence. An
interesting observation made in this flow was that the spanwise velocity fluctuations
were unusually large, relative to the level observed in flat-plate flow. However, the grid
was not really fine enough near the hill wall, particularly in the spanwise direction,
for this simulation to be regarded reliable.

The above discussion justifies the decision to undertake the present study on a new
geometry. The chosen configuration combines carefully chosen geometric features and
a reasonably high Reynolds number that together enable separation, recirculation and
reattachment-related processes to be studied in much greater detail than has been
done in earlier studies.

3. Computational framework
3.1. Equations and numerical solution

The Navier–Stokes equations for the resolved velocity ui and the filtered pressure p

are

∂ui

∂xi

= 0, (3.1)

∂ui

∂t
+

∂uiuj

∂xj

= − ∂p

∂xi

+
∂(2ν Sij )

∂xj

− ∂τij

∂xj

+ f, (3.2)

with the filtered strain-rate tensor Sij = 1
2
(∂ui/∂xj + ∂uj/∂xi) and the molecular

viscosity ν. The term τij = uiuj − uiuj results from the unresolved subgrid-scale con-
tributions and needs to be modelled by an appropriate subgrid-scale (SGS) model.
According to common practice, commutator terms are not explicitly accounted for.

The flow in the present streamwise periodic configuration is driven by a pressure
gradient, here represented through the volume force f which is constant in space. Its
magnitude is controlled so as to yield the desired global mass flux (at any instant).
With this practice, the bulk flow is imposed exactly and is not a result of the simula-
tion, as is the case, for example, in Salvetti et al. (2001), where the forcing term was
fixed by an a-priori approximation of the drag.

Two entirely independent codes have been used to generate the present results.
Both solve the equations for incompressible flow (3.1), (3.2) on body-fitted, curvilinear
grids by a cell-centred finite-volume method with collocated storage for the Cartesian
velocity components. Second-order central differencing is used for convection as well
as diffusive terms.

The code LESOCC, employed by the University of Karlsruhe team (IfH), was
originally developed by Breuer & Rodi (1994) with further enhanced in subsequent
work (Mathey, Fröhlich & Rodi 1999; Mellen et al. 2000). A fractional step method
is used, with a Runge–Kutta predictor and the solution of a pressure–correction
equation in the final step acting as a corrector (Le & Moin 1991). The momentum
interpolation proposed by Rhie & Chow (1983) is applied to inhibit spurious modes
associated with the pressure–velocity coupling. The Poisson equation for the pressure
increment is solved iteratively by means of the strongly implicit procedure (Stone
1968). Parallelization is implemented by domain decomposition, and explicit message
passing is used, aided by two layers of halo cells along inter-domain boundaries for
intermediate storage.
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The Imperial College team (IC) used the code STREAMLES developed by
Lardat & Leschziner (1998). The time scheme is based on an Adams–Bashforth
predictor step and the solution of the Poisson equation for the pressure as
corrector. Parallelization is effected by multi-block domain decomposition. Within
this framework, the three-dimensional problem for the pressure is converted into a
set of two-dimensional sub-problems by means of a Fourier transform in the periodic
spanwise direction. Data are redistributed and the two-dimensional problems are then
solved on individual processors by a SLOR technique applied in alternating directions
together with V-cycle multigrid acceleration. Parallel efficiencies of 90% on partitions
of up to 256 processors are obtained (Temmerman et al. 2000).

3.2. Subgrid-scale modelling

Two models of the eddy-viscosity type are employed in the computations presented
below. Both model the anisotropic part of the SGS term as

τij − 1
3
δij τkk = −2νtSij (3.3)

(the trace τkk is lumped into a modified pressure), but differ in the way the eddy
viscosity νt is determined.

In the LESOCC code, the dynamic Smagorinsky model (DSM) of Germano et al.
(1991), with the modification of Lilly (1992), has been applied. The model coefficient
C in the Smagorinsky expression

νt = C�2|S|, |S| = (2SijSij )
1/2, (3.4)

with �= (�x�y�z)1/3, is determined using an explicit box filter of width twice the
mesh size in wall-parallel planes, together with averaging in the spanwise direction
and relaxation in time with a factor of 10−3. The near-wall behaviour of the DSM
model in wall-resolving LES is such that it yields an eddy viscosity which is reduced
naturally by the dynamic procedure as the wall is approached. Hence no explicit
damping is required.

The second model is the ‘wall-adapted local eddy-viscosity’ (WALE) model pro-
posed by Ducros, Nicoud & Poinsot (1998), which has been used in the computation
performed with STREAMLES. In contrast to the Smagorinsky model which relates
the viscosity to the symmetric part of the velocity-gradient tensor, gij = ∂ui/∂xj ,
the WALE model is based on the symmetric part of the square of this tensor,
Gij = 1

2
(gikgkj + gjkgki). Its traceless part, G

a

ij = Gij − 1
3
δijGkk , is used to determine the

eddy viscosity through

νt = Cw�2

(√
|Ga|

)6

|S|5 +

(√
|Ga|

)5
. (3.5)

It is demonstrated in Nicoud & Ducros (1999) that |Ga| =0 and hence νt =0 for the
case of pure shear, e.g. gij = 0, except g12 �= 0. This is effective near the wall, yielding
the desired decay νt ∼ y+3 (Ducros et al. 1998), and also in separated shear layers
remote from walls, as illustrated by the results below. In contrast to the DSM, the
reduction of νt with the WALE model only depends on the symmetry properties of
the resolved motion, not on its smoothness. For the computation presented below, a
value of Cw = 0.1 has been used (Ducros et al. 1998).

The distributions of the eddy viscosity νt obtained with the two independent calcula-
tions with the two SGS models at x/h= 0.5 and x/h= 6.0 are plotted in figure 2. The
DSM yields a pronounced response in the shear layer emanating from the hill crest,
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Figure 2. Subgrid-scale viscosity obtained in computations RUN 1 (dotted) and RUN 2
(dash-dotted) with the DSM and the WALE model, respectively. (a) x/h = 0.5, (b) x/h = 6.0.

giving fairly high νt values in the entire lower part of the flow. In contrast, the WALE
model is not receptive to shear, as mentioned in connection with equation (3.5), so
that it yields a lower eddy viscosity in most parts of the domain. The maximum value
for νt/ν is approximately 5 with the DSM model, but only about 1 with the WALE
model. While the difference is considerable, the influence of this difference on the
LES calculations is low for the fine grid used here, as verified by the mean-velocity
and turbulent-fluctuation profiles presented later. This confirms that the simulations
are not materially inferior to a DNS near the lower wall. The influence of the SGS
model is, of course, larger on coarser grids, and this has been studied in a companion
paper (Temmerman et al. 2003) by performing calculations for the same test case
on two coarser grids in combination with near-wall approximations. On the coarsest
grid, some sensitivity to the SGS model was observed. On the medium grid, the
influence was small, which gives further support to the claim of near-DNS quality of
the present simulations for which the grids were substantially finer.

3.3. Computational domain, grid and numerical parameters

3.3.1. Computational grid

The computational domain ranges from crest to crest of two consecutive hills, sepa-
rated by a distance of Lx = 9h. On the upper and lower side it is bounded, respectively,
by a plane wall and the curved channel wall, respectively. The spanwise extent of the
domain is Lz = 4.5h. The adequacy of these choices will be demonstrated later in this
section.

For both computations reported below, exactly the same grid was employed one
spanwise plane of which is shown in figure 1. Near the lower wall, where no-slip
conditions are applied, a near-DNS representation is desired, so that reliable results,
independent of any model assumptions, can be obtained in this region of primary
interest. Hence, a fine enough grid must be used, which allows almost all motions,
down to the dissipative scale, to be resolved. Also, numerical errors should be very
small, so a high-quality nearly orthogonal grid is necessary. At the upper plane wall,
the wall function of Werner & Wengle (1993) was used, since the details of the
attached near-wall flow along this wall are not of interest here and do not affect the
solution in the lower part.
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Figure 3. Extent of the wall-adjacent cells along the bottom boundary in wall units.

In view of the above desiderata, the structured, body-fitted curvilinear grid was
carefully designed, with an elliptic grid-generation technique based on the approach
of Steger & Sorenson (1979), as implemented by Mellen (1998). This yielded a high-
quality mesh in the (x, y)-plane with almost orthogonal grid lines, an expansion ratio
below 1.05 in the whole domain and a minimal streamwise gradation. This grid,
shown in figure 1, contains Nx × Ny × Nz = 196 × 128 × 186 interior cells, with the
spanwise distribution being uniform.† The quality of the resolution is judged first by
determining the cell size in wall units, and figure 3 gives the size of the wall-adjacent
cells in the three directions along the bottom wall. As seen, the centre of the wall-
adjacent cell is located at y+

1 = �y+/2 ≈ 0.5 over most of the wall. The streamwise and
spanwise cell sizes in wall units are below 25 and 10, respectively. These values are
substantially lower than the recommendations y+

1 < 2, �x+ = 50–150, �z+ = 15–40
given by Piomelli & Chasnov (1996) for wall-resolving LES. Figure 2 also shows that
the normalized mesh distances increase along the windward slope of the hill due to an
increase in the wall shear stress. The maximum values reached are y+

1 = 2, �x+ = 50,
�z+ = 30, all three still being within the recommended range given above.

Near the upper wall, the grid is considerably coarser and a wall function is used.
The cell sizes along that wall are �x+ = 12–35, �z+ = 10–15 and y+

1 = 12–17 in wall
units, respectively. These values are within ranges in which wall functions are known
to work well (Fröhlich & Rodi 2000), so that it can be expected that the effect of the
upper wall on the flow in the lower part is adequately represented.

3.3.2. Reference quantities and numerical parameters

Throughout the paper, reference quantities for length, velocity and time are h, Ub

and h/Ub, respectively, where Ub is the bulk velocity over the crest of the hill.
All data presented are made dimensionless with these quantities. An overview of the

† The numbers given in Mellen et al. (2000) are slightly larger because halo cells required for
periodic boundary conditions were counted while these are omitted herein.
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Run Grid SGS Wall Code �t/tb taver/tx

(
x

h

)
sep

(
x

h

)
reat

1 196 × 128 × 186 DSM NS LESOCC 2.7 × 10−3 55 0.20 4.56
2 196 × 128 × 186 WALE NS STREAMLES 1.3 × 10−3 55 0.22 4.72

Table 1. Parameters of the computations discussed in the present paper together with
separation and reattachment points.
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Figure 4. Profiles of the ratio �/η: (a) x/h = 0.5, (b) x/h =6. Data from RUN 2.

numerical parameters used in the two independent calculations is given in table 1. The
time step was chosen so as to result in a maximum local CFL number of 0.4 and 0.2,
respectively. After 23 flow-through times, tx = Lx/Ub, mean quantities were collected
over a time period of 55tx and were also averaged in the spanwise direction. The
suitability of this integration period was checked by investigating changes in the
statistics at intermediate times. Average quantities are denoted with angular brackets,
and fluctuations with respect to the mean by a prime. In the remainder of the paper,
the overbar designating resolved quantities is omitted for simplicity.

3.3.3. Assessment of resolution

The resolution characteristics of the grid near the walls have been discussed above
by reference to the grid spacings in wall units. In the interior of the flow, the resolution
can be assessed by comparing the grid spacing � to an estimate of the Kolmogorov
length η, characterizing the length scale of the dissipative motion. The latter scale can
be obtained from the dissipation rate ε by the relation

η =

(
ν3

ε

)1/4

. (3.6)

The dissipation rate was determined from the turbulence-energy budget, which will
be presented and discussed in § 4 below. Figure 4 shows typical vertical profiles of the
ratio �/η along cuts through the shear layer and in the region beyond reattachment.
As seen, the ratio is of order 5 to 10. It should be noted that the numerical value of
η resulting from (3.6) is a very conservative estimate for the finest scales in turbulent
flow (Pope 2000). Equation (3.6) is merely a scale relation and should, in fact, contain
a constant of value not neccessarily 1. Considering isotropic turbulence and a carefully
devised model spectrum, Pope (2000) shows that the maximum dissipation takes place
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at a wavenumber of 0.26/η corresponding to a length scale of about 24η. Since at
least two grid points are needed to resolve a flow feature, a grid spacing of 12η is
required to resolve features having a scale of 24η. With such a grid a substantial part
of the dissipation is resolved. Figure 4 shows that this level of discretization has been
achieved with levels �/η < 12 over almost the entire domain, except near the upper
wall where resolution is not of major concern, as noted earlier.

Further support is provided by the ratio νt/ν which gives an indication of the ratio
of resolved and modelled contributions to dissipation. Figure 2 suggests that, typically,
half of the dissipation results from the SGS model when the WALE model is used,
while the remainder is associated with the resolved motion. This indicates a very good
resolution for this relatively high-Reynolds-number flow. When the dynamic model
is used, the eddy viscosity is larger and so is the modelled contribution. Nevertheless,
the results for the mean flow and the turbulence fields reported below agree to a
remarkable degree which gives evidence of the low contribution of the SGS model to
the first and second moments.

The quality of resolution can further be assessed by means of spectra. One of the
most critical areas in terms of resolution is the thin attached boundary layer separating
from the hill and entering a region where the grid gradually coarsens (see figure 1).
Spectra have been computed in this region and are reported in § 5.1 below. As will
emerge, these also indicate a good resolution with the grid and method employed.

It should be stressed here that, with LES quantities related to low wavenumbers
can be well resolved, while others related to high wavenumbers, such as dissipation,
are not. Hence, the assessment of resolution in an LES must be related to the quantity
under consideration. The quantities extracted from the present simulations and dis-
cussed below relate to low-order moments of the velocity which are largely due to low-
wavenumber contributions in turbulent flows. For high Reynolds numbers these can
be computed accurately by LES, in terms of their statistical properties, even if the
dissipation range is not resolved at all. In the present medium-Reynolds-number case
this is similarly achieved by also resolving a significant part of the dissipation range.

3.3.4. Extent of the calculation domain

It has been observed in spanwise-homogeneous, statistically two-dimensional sepa-
rated flows that structures with especially large scales in the spanwise direction may
exist, as is the case in the flow around a cylinder (Zdravkovich 1997). If computations
are performed on a domain the spanwise extent of which is smaller than these scales,
these structures cannot be represented adequately so that an error is introduced. In
the following we investigate whether the spanwise extent of 4.5h, chosen to keep the
computational cost affordable for the high-resolution LES, is sufficient. To this end,
a sensitivity study was performed in which the spanwise domain size was increased,
with all other parameters being unchanged. However, this had to be done on a
substantially coarser grid for cost reasons. This contains Nx × Ny = 112 × 64 points in
the (x, y)-plane and requires the use of a wall function on the lower curved wall also.
Here, the wall function of Werner & Wengle (1993) was used, together with the DSM
subgrid-scale model in two calculations, one performed with a spanwise extent of
Lz/h= 4.5 and Nz =90 points in the spanwise direction, and the other with Lz/h= 9
and Nz = 188 points (Mellen et al. 2000). Typical results of this study are given in
figure 5, which shows profiles of the streamwise mean velocity and fluctuations at
x/h= 2.0. The average separation point changes from xsep/h= 0.50 to 0.45 and the
reattachment point from xreat/h= 3.20 to 3.25 when halving the size of the spanwise
domain. There is hardly any change in the mean-velocity profiles, but there are
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Figure 5. Computations with different lateral domain sizes, Lz/h = 4.5 (dotted) and Lz/h = 9
(dashed) on coarser grids. (a) Average velocity at x/h = 2.0, (b) streamwise fluctuations at
x/h =2.0. The data from the corresponding fine-grid computation RUN 1 with Lz/h = 4.5
(solid) have been added for comparison.

changes in the peak level of the u-fluctuations. The inclusion of the highly-resolved
results in figure 5 indicates, however, that the sensitivity to the spanwise extent is
substantially lower than that to the resolution and near-wall treatment. Thus, the
effect of the spanwise extent increasing beyond 4.5h is judged to be minor.

Another, more fundamental test of the adequacy of the chosen spanwise extent is
to compute two-point correlations, which give an indication of the spanwise extent
of the structures. The size of the structures is roughly twice the distance between the
origin and the point where the correlation levels off to zero. Hence, the calculation
domain is usually considered large enough if all two-point correlations vanish at half
the domain width. The definition of the correlation coefficient used here is

Rφψ =
〈φψ〉√

〈φφ〉〈ψψ〉
(3.7)

where φ and ψ are two fluctuating quantities. In the following, we consider the corre-
lation coefficient of the u-, v- and w-fluctuations, denoted R11, R22, R33, respectively,
as a function of the separation dz in the z-direction. This was done for several points
in the (x, y)-plane for the simulation of the domain with Lz/h= 9. The averaging was
performed in time and over several pairs of points with the same (x, y)-coordinates
and distance rz, but each at a different position in z. The distributions of Ruu are shown
in figure 6 for the locations identified in the inset. It is apparent that immediately
after separation (point A), the correlation length, and hence the size of the spanwise
structures, the correlation effectively vanishes at 1.5h. Further downstream, at points C
and E, a pronounced minimum develops, which is due to the formation of streamwise
vortices discussed later. This is reduced within the recirculation region and even more
so when the leeward side of the hill is approached (not shown here). Close to the
upper boundary (point B), no pronounced minimum is observed. From figure 6 it
is clear that the correlation does not vanish for all points in the domain within
rz = 2.25h (half the domain size), so that the largest scales cannot be fully represented
in the computation. A spanwise extent of Lz/h ≈ 7–8 would possibly be required
to achieve this. A computation with this domain size, while maintaining the spatial
resolution, was not possible with the computer resources available. Figures 5 and 6
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Figure 6. Spanwise correlation of streamwise velocity obtained with Lz = 9h, at different
points (x/h, y/h) in the flow field. A: (0.4, 1.1), B: (3.6, 2.5), C: (3.6, 1.1), D: (3.6, 0.2), E:
(5.4, 1.1). The short vertical line relates to the size of the domain with Lz = 4.5h. Data from
Klostermeier (2001).

suggest, however, that the error introduced in the first- and second-order moments
is small. As reported in many bifurcation studies, e.g. the dissertation of Fröhlich
(1990), reducing the domain width from the optimal size tends to ‘squeeze’ only the
very largest structures. In the presence of a wide range of lengths this does not sub-
stantially alter the primary flow properties.

It is finally remarked that, if used as a test case, the issue of fully adequate (optimal)
spanwise extent only affects comparisons with solutions based on the assumption of
complete spanwise homogeneity, as is the case with two-dimensional RANS computa-
tions. If, in contrast, LES or DNS computations are undertaken with the same
spanwise periodicity imposed, the comparison of the associated results is not affected.

Consideration is next given to the extent of the computational domain in the
streamwise direction. For ‘wavy-terrain’ simulations the computational domain usually
extends over two periods of the sinusoidal wall, and it was demonstrated by Calhoun
(1998) and Henn & Sykes (1999) that this is indeed sufficient. Since the present geo-
mety features a substantially larger inter-hill distance and a reduced channel height,
one period was selected as the computational domain. The analysis of the instan-
taneous flow in § 6 and the spectra in § 5.1 below demonstrates that the low-frequency
contributions to the temporal spectra result mainly from the return time of the
periodic flow and not from the size of the structures in the streamwise direction. RANS
computations contributed to a recent ERCOFTAC/IAHR workshop (Manceau &
Bonnet 2003) also point to this conclusion. These were performed over two periodic
segments with inflow conditions taken from the LES, and showed only insignificant
differences between the consecutive segments. Further validation was provided by
Temmerman (2004) who performed simulations over two streamwise segments on a
grid of 112 × 64 × 56 cells per segment and Lz = 4.5h. Differences in mean flow and the
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Figure 7. Streamlines of the average flow and location of cuts at x/h =0.05, 0.5, 2, 4, 6, 8
where detailed data analysis has been performed. The dots indicate the locations where
spectra have been computed.
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Figure 8. Pressure coefficient along the top and bottom wall from RUN 1 and RUN 2 with
normalization as discussed in the text.

fluctuations, compared to the single-segment computation were extremly small. It is
concluded, therefore, that one streamwise segment is sufficient for the present study.

4. Results for statistically averaged quantities
4.1. General view of the flow

Before profiles of various statistically averaged quantities are presented at a number
of streamwise stations, some major global flow characteristics are shown in figures 7
to 9. Figure 7 shows the time-averaged streamlines, together with the locations at
which statistical data are presented in subsections to follow.

The flow separates at 0.2h downstream of the hill crest and reattaches at 4.6h–4.7h.
Thus, the recirculation zone occupies about 50% of the streamwise domain. The
flow then recovers for about 2.5h, after which it accelerates towards the next hill
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Figure 9. Comparison of friction coefficient along bottom wall:
RUN 1 (dashed), RUN 2 (solid).

crest. The skin-friction distribution on the lower wall, given in figure 9, indicates a
rather irregular, geometry-induced variation of the near-wall velocity. This is best
considered in conjunction with the wall-pressure coefficient on the lower and upper
walls, given in figure 8. As the reverse flow in the recirculation region approaches
the leeward hill face, it decelerates and almost reverses its direction, implying a trend
towards the formation of two secondary vortices immediately following separation.
The pressure coefficient on the lower wall is almost constant over most of the upstream
half of the recirculation zone, following the sharp rise immediately downstream of
the crest, which provokes separation. The pressure plateau in this area is typical of
that generally observed in separated regions bordered by an outer flow with minor
streamwise velocity variations, and is entirely consistent with the very slow near-wall
flow in the region 0.5 <x/h< 2.0. Following a minimum in skin friction at x/h= 2.8,
where the reverse flow reaches a maximum, the near-wall velocity and skin friction
increase towards zero at the reattachment point, and this is consistent with a positive
pressure gradient associated with the deceleration of the outer flow as the lateral
dimension of the recirculation zone diminishes and the outer flow decelerates. After
reattachment and partial recovery, subject to a moderately adverse pressure gradient,
the developing boundary layer is decelerated by the steep windward face of the next
hill, to the extent of becoming incipiently separated at x/h= 7.2. The local minimum
in skin friction at this location coincides with an increase in wall-pressure gradient at
the same location, which is at the foot of the right-hand hill. The flow finally acce-
lerates on the windward hill side towards the hill crest. As it does so, the friction
coefficient rises sharply, and the thickness of the boundary layer decreases from
d ≈ 0.2h at the foot of the hill to d ≈ 0.08h just upstream of the hill crest. The strong
increase in shear stress in this region is responsible for the higher y+

1 values observed
in figure 3.

The two simulations are seen to yield distributions which agree closely, with RUN 1
giving a slightly shorter reattachment length and marginal separation at the foot of
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the downstream hill. Associated with the slightly shorter recirculation length is a
slightly higher rate of pressure around 3<x/h< 5, and this is also the reason for the
lower pressure level in the upstream half of the recirculation zone.

4.2. Profiles of statistical properties

In what follows, profiles of mean velocity components, turbulent stresses, turbulence
energy and budgets for the stresses and energy at the streamwise stations indicated
in figure 7 are presented and discussed in figures 10–14. The stations were chosen so
as to represent flow regions having particular characteristics or behavioural features.
The profiles of velocity and stresses are presented over the full height of the channel
from the lower to the upper wall, while the budgets are only given for the lower
portion of the flow, extending to y/h= 2, a layer in which all the physical processes
of prime interest occur. Profiles of mean velocity, turbulent stresses and turbulence
energy are included from both runs and are thus juxtaposed. The profiles are plotted
as pairs arising from the two simulations. Because the profiles forming any one pair
generally agree closely, they can be readily recognized as being associated. Attention
is drawn to the fact that the turbulence energy is plotted as − k/U 2

b , i.e. these profiles
thus appear to the left of the zero origin of the abscissa.

The budgets arise from the various terms contributing to the transport equation
for the Reynolds stresses 〈u′

iu
′
j 〉,

D

Dt
〈u′

iu
′
j 〉 = Pij + Tij + Dij + Dp,ij + Φij − εij (4.1)

with the right-hand-side terms defined as follows:

production Pij = −〈u′
ju

′
k〉∂〈ui〉

∂xk

− 〈u′
iu

′
k〉∂〈uj 〉

∂xk

, (4.2)

turbulent transport Tij = −
∂〈u′

iu
′
ju

′
k〉

∂xk

, (4.3)

viscous diffusion Dij = ν
∂2〈u′

iu
′
j 〉

∂xk∂xk

, (4.4)

pressure diffusion Dp,ij = − 1

ρ

(
∂〈u′

jp
′〉

∂xi

+
∂〈u′

ip
′〉

∂xj

)
, (4.5)

pressure strain Φij =

〈
p′

ρ

(
∂u′

i

∂xj

+
∂u′

j

∂xi

)〉
, (4.6)

dissipation εij = 2ν

〈
∂u′

i

∂xk

∂u′
j

∂xk

〉
. (4.7)

The terms (4.2)–(4.6) were determined explicitly from the IC simulation (RUN 2),
while εij was obtained as the imbalance of the other terms according to (4.1). An
explicit evaluation of εij yielded approximately 50–70% of the value obtained from
the balance, a level regarded as reasonable in view of the fact that the ratio of grid
distance to Kolmogorov length was of order 10. This level is consistent with the ratio
νt/ν = O(0.5) in figure 2.

The budget for the turbulence energy 〈k〉 = 〈u′
iu

′
i〉 follows from contracting the set

of stress equations, i.e. from half of the sum of the equations for 〈u′u′〉, 〈v′v′〉, and
〈w′w′〉. In this, the pressure–strain term should vanish, and this has been confirmed to
be closely satisfied by summing the pressure–strain contributions to the normal-stress
budgets. Attention is drawn to the fact that the symbols attached to the budget
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profiles only serve to identify the different lines more clearly and do not correspond
to the computational grid employed.

4.3. Position x/h= 0.05

This location is a short distance beyond the hill crest. Profiles of velocity, Reynolds
stresses and turbulence energy at this position are given in figure 10(a, b). Budgets,
although available, are not included here, however, because the extremely high
gradients and rates of change of the flow variables very close to the wall pose
uncertainties in relation to the accuracy of the higher-order moments contributing to
the budgets.

The boundary layer is very thin (about 0.1h), and the streamwise velocity features a
near-wall peak, due to the preceding acceleration along the windward slope of the hill.
There is also a slight upward motion associated with flow along the steeply inclined
windward hill face. The shear stress 〈u′v′〉 reaches a first minimum value in the
boundary layer and then declines to virtually zero, where the velocity component 〈u〉
has a maximum. However, beyond this location, the velocity gradient reverses sign,
but the shear stress does not. Indeed, the maximum 〈u′v′〉 occurs where there is a
local minimum of 〈u〉 at around y/h= 1.6, which is in conflict with the eddy-viscosity
concept and indicates substantial stress-transport effects (unless ∂〈v〉/∂x is important,
which is not the case). The velocity then rises to a second maximum towards the
upper wall, and the shear stress decreases, changing sign roughly at the location of
this maximum and reaching a peak value in the boundary layer near the upper wall,
both consistent with the eddy-viscosity concept.

The normal stresses are remarkable, primarily in so far as their respective maxima
occur at very different positions, giving rise to very high local levels of anisotropy.
The streamwise stress 〈u′u′〉 has a strong peak close to the lower wall, reflecting
intense generation by the high shear strain in the boundary layer. As expected, the
spanwise stress is lower and the wall-normal stress is the lowest. However, their
maxima occur well outside the boundary layer, suggesting a dominant history effect
from upstream locations. In the boundary layer, the anisotropy is unusually intense,
with the ratio 〈u′u′〉/〈v′v′〉 reaching a value of order 20 and indicating the approach
to two-component turbulence necessarily prevailing close to the wall due to the wall’s
blocking effect. The very high near-wall level of 〈u′u′〉 is also due to intense streamwise
fluctuations associated with intermittently high positive and negative velocities that
arise because the separation moves quickly over a substantial proportion of the surface
around the hill crest. As will become clear later, the high level of spanwise stress
〈w′w′〉 at around y/h= 1.08 is linked to an intense amplification of this component
upstream of the hill crest by the action of ‘splatting’ on the windward slope and the
subsequent transport of this component towards the crest region. Away from the lower
wall, in the weak and zero-shear regions, the normal stresses, and thus the turbulence
energy, are maintained at fairly high levels, again indicating intense transport of
turbulence from the highly disturbed upstream region.

4.4. Position x/h= 2.0

This location is in the middle of the recirculation region and is therefore especially
interesting, as it combines three interacting layers: the free shear layer separating
from the hill crest, the reverse flow below this layer, i.e. for y/h � 0.5 consisting also
of a free shear layer, and a boundary layer below y/h= 0.1. Profiles pertaining to this
section are included in figures 10(c), 10(d), and 12, the last containing the budgets.
The streamwise velocity profiles are unremarkable and show the expected reverse flow
in the lower portion, the shear layer above it and the boundary layer at the upper
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Figure 10. For caption see facing page.
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Figure 11. (a) Mean velocities and (b) Reynolds stresses in a zoom close to the wall at
x/h = 8. In contrast to the graphs in figure 10, a decomposition of the velocity vector into
wall-normal components (index n) and tangential components (index t) has been applied here.

wall, with the slight glitch in 〈u〉 originating from the application of the log-based wall
law at this wall. The transverse velocity is insignificant, as this section is, effectively, in
the streamwise centre of the recirculation bubble. The Reynolds stresses in the shear
layer conform to expectations: the shear stress is negative, and all stresses reach a
peak at the location of maximum shear strain. Of the normal stresses, the streamwise
stress is the highest, while both the spanwise and transverse stresses are lower and of
very similar shape and magnitude, indicating that, in the absence of significant wall
influences, the pressure–strain process is unbiased in respect of these two stresses. The
anisotropy is significant, but not intense, with the ratio 〈u′u′〉/〈v′v′〉 of order 1.3. Also
as expected, the ratio 〈u′v′〉/k is about 0.3.

In the reverse-flow layer, 0 <y/h< 0.5, the most interesting feature, found by both
simulations, is the distinctive rise of 〈w′w′〉, relative to the other two normal stresses,
leading to a virtual equality of the spanwise and streamwise normal stresses close to
the wall. A similar behaviour will be shown later to occur at x/h= 6, and this is
claimed to be due to ‘splatting’ effects around the reattachment region, which are then
carried along to neighbouring locations by transport. This will be discussed further at
the end of this subsection by reference to the budget at x/h= 2. Splatting will also be
seen later to be an exceptionally influential process in the accelerating portion above
the windward face of the right-hand hill. In contrast, the wall-normal stress declines
steadily as the wall is approached, a behaviour anticipated due to wall blocking. A
feature that is not expected, however, is that the reversal in the streamwise-velocity
gradient close to the lower wall, at y/h= 0.1, is not accompanied by a corresponding

Figure 10. Comparison of mean velocities and Reynolds stresses obtained in the two indepen-
dent computations RUN 1 (IFH) and RUN 2 (IC). The profiles have been determined at
x/h = 0.05 (a, b), x/h = 2 (c, d), x/h = 6 (e, f ), x/h = 8 (g, h). The left-hand pictures (a, c, e, g)
show profiles of the mean velocities 〈u〉 and 〈v〉 according to the keys in graph (a). The pictures
on the right hand side (b, d, f, h) display the Reynolds stresses, again according to the keys
in the uppermost graph. Subfigure (h) contains two further lines with the additional keys
indicated in this graph. Different quantities can be identified with more ease when considering
a pair of lines for the same value. Observe that the vertical axis is different in some plots due
to the elevation of the bottom surface.



38 J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman and M. A. Leschziner

y/h y/h

–0.02

0

0.02

–0.05

0

0.05

–0.02

–0.01

0

0.01

–0.03

–0.02

–0.01

0

0.01

0.02

–0.02

–0.01

0

0.01

0.02

–0.05

0

0.05

–0.02

0

0.04

0.02

0.03

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0

–0.05

0

0.05

0.10
L

os
s

G
ai

n

0 0.02 0.04 0.06 0.08 0.10

0 0.02 0.04 0.06 0.08 0.10

–0.02

–0.01

0

0.01

Balance
Viscous diffusion
Turbulent transport
Dissipation
Production
Pressure–Strain
Pressure–Diffusion
Convection

0 0.02 0.04 0.06 0.08 0.10

0 0.02 0.04 0.06 0.08 0.10

0 0.02 0.04 0.06 0.08 0.10

�
u′

u′
�

L
os

s
G

ai
n

�
v′
v′

�

L
os

s
G

ai
n

�
w

′w
′�

L
os

s
G

ai
n

�
u′
v′

�

L
os

s
G

ai
n

L
os

s
G

ai
n

L
os

s
G

ai
n

L
os

s
G

ai
n

L
os

s
G

ai
n

L
os

s
G

ai
n

�
k�

1

0 1

0 1

0 1

0 1

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

Figure 12. For caption see facing page.
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reversal in the shear stress, anticipated on the basis of the eddy-viscosity concept. It
follows that the turbulent shear stress cannot support the negative wall shear stress in
this region, which must exist due to the reverse motion, as seen in figure 9 (note that
correlation 〈u′v′〉 and the shear stress 〈τ 〉 have opposite signs). Hence, the viscous
stress must dominate in this region.

As will be demonstrated later when examining the budgets, the processes in the
near-wall layer under consideration differ drastically from those in a conventional
boundary layer. For example, although there is a sign reversal in the production of
the shear stress, in line with the sign reversal in the shear strain, other contributions
to the shear-stress balance conspire to maintain the shear stress at a positive level.
Moreover, the increase of the turbulence energy and the wall-parallel normal stresses,
due to a combination of production, splatting-related phenomena and convective tran-
sport, leads to very high levels of near-wall anisotropy and ratio 〈u′v′〉/k, even outside
the buffer layer, the position of which corresponds to y/h= 0.05, i.e. well below the
location of minimum reverse velocity.

The budgets of all stresses and turbulence energy are given in figure 11. They cover
only the lower region, roughly to the upper edge of the separated shear layer, as this
region is of primary interest. The shear-stress budget shows the usual behaviour in
the separated shear layer of a near balance between pressure–strain and production,
with the remaining terms being subordinate. As the wall is approached, but outside
the viscous sublayer (y/h> 0.05), the influence of production diminishes, and the
pressure–strain becomes negative and is increasingly balanced by the positive pressure
diffusion. As the position of peak negative velocity is traversed, the production reverses
sign, but remains low relative to pressure diffusion, a condition that prevents the shear
stress from changing sign, as noted earlier. As the viscous sublayer is entered, the
production reaches a weak maximum, but this is insufficient to counter the rapidly
declining shear stress, which therefore remains positive. Within the viscous sublayer,
pressure–strain rises strongly together with a corresponding drop in pressure diffusion,
with both essentially balancing each other. At the wall itself, neither is constrained to
vanish, because one constituent of both involves the correlation of pressure fluctuation
and wall-normal gradient of the streamwise-velocity fluctuation, neither of which
asymptotes to zero at the wall.

The 〈k〉-budget shows that production is highest in the separated shear layer, thus
causing a maximum in 〈k〉. At the position of peak production the ratio of production
to dissipation is around 2. Turbulent diffusion accounts for most of this imbalance,
transporting energy away from the production region to the reverse-flow region and
to the edge of the shear layer. This explains the elevated values of 〈k〉 in the outer
region despite the low velocity gradient and hence low production therein. Convection
is also significant at the edges of the shear layer. At the outer edge, it removes energy
to regions further downstream, while in the reverse-flow region, energy is gained
through convective transport from the reattachment region. Above the boundary layer,
production is low in the reverse-flow region, with positive convection and turbulence
transport balanced by dissipation and pressure diffusion. Hence, the characteristics of
this region are very different from those in a conventional mixing layer. As is the case

Figure 12. Budgets of Reynolds stresses and 〈k〉 at x/h = 2. Left: principal part of the
channel, right: zoom onto the bottom wall. Symbols in these figures and similar ones below
serve to distinguish lines and do not represent the inter-nodal distance of the computational
grid employed.
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with shear-stress production, that of turbulence energy also rises to a weak maximum
very close to the wall, but its contribution to the balance is generally small. Within
the viscous sublayer, pressure and viscous diffusion become the dominant gain terms,
while dissipation becomes the dominant sink. As expected, the balance asymptotes to
a condition in which viscous diffusion is cancelled by dissipation, with all other terms
vanishing at the wall.

The budget for 〈u′u′〉 shares a number of features with the budget for 〈k〉. Thus,
the productions show similar profiles, with that of 〈u′u′〉 having a level about twice
that of 〈k〉, since the production of 〈w′w′〉 is zero, while that of 〈v′v′〉 is negligible. On
the other hand, the dissipation levels of all three normal stresses in the shear layer are
similar, consistent with the concept of isotropy in the smallest scales. The imbalance
between production and dissipation is compensated mainly by the pressure–strain
term, which extracts energy from the 〈u′u′〉 component and transfers this to the other
normal stresses, the balance of which thus feature positive pressure–strain contribu-
tions. In the near-wall region, outside the viscous sublayer, the budget of 〈w′w′〉 is
dominated by positive convection and negative dissipation and pressure–strain. The
positive convection term reflects the transport of high levels of 〈w′w′〉 from the
impingement zone in which splatting is an important mechanism. As shown earlier,
the consequence is a sharp increase in 〈w′w′〉, which reaches a level very close to that
of 〈u′u′〉. It is this process that causes a reversal in the pressure–strain contribution,
with both 〈u′u′〉 and 〈w′w′〉 transferring energy to 〈v′v′〉. As the wall is approached,
within the thin boundary layer, 〈v′v′〉 has to decay rapidly, and this is effected by
a reversal in the pressure–strain, which now transfers energy from 〈v′v′〉 to 〈u′u′〉
and 〈w′w′〉. Positive convective transport remains an important contributor to 〈w′w′〉,
keeping this stress relatively high in the boundary layer. As the viscous sublayer is
traversed, viscous diffusion tends to balance dissipation, as is the case with 〈k〉. In the
case of 〈v′v′〉, in contrast, viscous diffusion is necessarily negligible and dissipation
approaches zero as turbulence (including the smallest scales) tends towards a two-
component state. The balance is dominated by pressure–strain, which has to diminish
〈v′v′〉 at a rate proportional to y4, and pressure diffusion.

4.5. Position x/h = 6.0

This location is within the post-reattachment region, halfway between reattachment
and the foot of the next hill. The flow here consists of the boundary layer developing
from the reattachment point and, above it, a wake which originates from the separated
shear layer further upstream. It is thus characterized by flow components with very
different scales and history which interact to form a flow recovering towards a fully
developed channel flow. It is well known that most statistical closures do not represent
this recovery process well. The features discussed in this section will therefore be of
particular interest to modellers.

Profiles of velocity and second moments are shown in figure 10(e, f ). The boundary
layer, of thickness y ≈ 0.2h is bordered by a region of nearly constant velocity gradient,
reflecting an ongoing recovery of the reattached shear layer. As seen from figure 8,
the flow develops against an adverse pressure gradient, caused by the outer flow
decelerating mildly as fluid is transported downwards to fill the wake. The boundary
layer at the upper wall is much thicker, of order y = 0.6h, and its structure is expected
to conform to that of other boundary layers subjected to a mild adverse pressure
gradient.

Although the flow in this section is drastically different from that at x = 2h, the tur-
bulence field is characterized by qualitatively similar features, except that the intensity
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of turbulence is now much reduced as the strain diminishes and the flow tends to ap-
proach a state of equilibrium. Thus, the stresses and turbulence energy reach maxima
within the high-strain region of the shear layer, the ratio 〈u′v′〉/〈k〉 being close to
0.3, and the 〈u′u′〉 exceeding 〈w′w′〉 by a factor of approximately 1.4. Some points of
difference pertaining to the flow above the boundary layer include a more distinctive
separation between (the lower) 〈v′v′〉 and (the higher) 〈w′w′〉, with the ratio being
typically 1.1–1.2, and the considerably broader region in which the stresses and
turbulence energy are increased, as a consequence of the positive shear strain and
thus higher turbulence production occupying a correspondingly wider portion of the
flow. Thus, aside from the boundary layer at the lower wall, the distributions of
second moments do not contain features not observed in other shear layers. In the
boundary layer, the most distinctive feature, also observed previously at x/h= 2, is a
marked increase of 〈w′w′〉, and this is again attributed to the splatting effect around
reattachment, which causes large pressure fluctuations in combination with convective
transport from the reattachment region towards the location being considered. The
streamwise stress −〈u′u′〉 is observed to develop a local maximum in the boundary
layer, but this is mainly due to production associated with the shear strain in the
thickening boundary layer – although splatting may, here too, be a contributory
process. The simulataneous increase of −〈u′u′〉 and −〈w′w′〉 in the boundary layer
is then responsible for the high level of −〈k〉 around y/h= 0.15. As the shear
stress remains low, for reasons clarified below by reference to the budgets, the ratio
−〈u′v′〉/〈k〉 reaches very high values, of order 10, well outside the semi-viscous near-
wall region.

The budgets for this section are shown in figure 13. In the shear-layer region, the
budget for 〈u′v′〉 is similar to that at x/h= 2.0. However, the magnitude of the terms
is now considerably smaller, because the velocity gradient and thus production are
lower. In contrast to x/h = 2.0, turbulent diffusion plays a more important role in
balancing production in combination with the more dominant pressure–strain process.
The former transports shear stress away from the region of high production towards
the wall and the edge of the sheared layer. At this station, production and pressure–
strain do not change sign, as would be expected for substantial positive shear straining
across the lower flow portion. The pressure–strain contribution develops a near-wall
minimum in a region in which pressure diffusion rises and balances the negative
turbulence transport and production. Thus the tendency for production to increase
the magnitude of the shear stress is counteracted by pressure-related turbulence
transport away from the boundary layer, keeping the shear stress relatively low and
resulting in the previously observed high levels of the ratio −〈u′v′〉/− 〈k〉. As the
wall is approached through the viscous sublayer, the budget is dictated by a balance
between very high pressure–strain and pressure-diffusion contributions. This is a
rather surprising observation, but not an unrealistic one, as pressure fluctuations are
high in this region and evidently correlate with ∂u′/∂y, which is non-zero at the wall.

The budget for 〈k〉 shows a significant level of production in the broad shear-layer
region, but this is much lower than at x/h= 2.0. Also, in contrast to x/h= 2.0, it is
not much larger than dissipation (the ratio being about 1.2), so that turbulence is
here closer to local equilibrium. Alongside dissipation, turbulent transport plays an
important role in this layer, transporting turbulence energy away from the region of
production towards the wall and the outer region of the sheared flow. Convection
also makes an important contribution by transporting high levels of energy from
upstream regions (see the budget for x/h= 2.0) to the section being considered,
thus hindering the approach to turbulence equilibrium. In the boundary layer, the
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Figure 13. Budgets of Reynolds stresses and 〈k〉 at x/h =6. Left: principal part of the
channel, right: zoom onto the bottom wall.
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balance is dictated by turbulent transport and dissipation, the former transporting
energy from the outer shear layer into the boundary layer. This interaction is very
different from that in an ordinary boundary layer bordering an irrotational free
stream, in which the balance is mainly between production and dissipation. As the
wall is approached, pressure–diffusion is the main opponent of dissipation. As will be
shown below, this gain is attained through pressure fluctuations, probably elevated
by splatting at the impingement region, being correlated with v-fluctuations. At the
wall itself, all terms but viscous diffusion and dissipation tend to vanish, as required
by kinematic constraints.

As in the budget for 〈k〉, the production of 〈u′u′〉 is now much lower than at x/h=
2.0 and so is the pressure–strain term, which here too is the largest sink in the shear-
layer region. Also, as in the case of 〈k〉, convection from upstream regions increases
〈u′u′〉 and turbulent diffusion decreases the stress by lateral transport away from the
central portion of the shear layer. Over most of the boundary layer, y/h= 0.06 − 0.3,
dissipation is again balanced mainly by turbulent diffusion transporting energy from
the shear layer towards the wall. As the wall is approached, pressure–strain rises and,
aided by (relatively weak) production, balances dissipation. The positive pressure–
strain reflects the need to drain energy from the 〈v′v′〉 component as turbulence
approaches a two-component state by wall blocking, and this energy is transferred
to both 〈u′u′〉 and 〈w′w′〉. However, the bulk of the pressure–strain-effected transfer
will be seen to be to 〈w′w′〉, and this is probably associated with splatting. At the
wall, there is the usual balance between dissipation and viscous diffusion, as is also
observed in the budgets for 〈k〉 and 〈w′w′〉.

The budget for 〈v′v′〉 in the shear layer region is dominated by dissipation and tur-
bulent transport which are balanced mainly by a positive pressure–strain contribution,
which is derived from 〈u′u′〉. The most interesting processes pertain to the near-wall
region. Here, positive turbulence transport balances the negative pressure–strain con-
tribution, the latter reflecting the process that is required to diminish this component
by wall blocking. As the wall is approached, the balance is increasingly dominated
by negative pressure–strain and positive pressure–diffusion. Both reflect the high
level of pressure fluctuations and the interaction of these with velocity and strain
perturbations. It is the high level of pressure–diffusion in the budget of 〈v′v′〉 which
balances the dissipation of 〈k〉. Importantly, the near-wall dissipation of 〈v′v′〉 is low
and quickly diminishes as the wall is approached, where two-component turbulence
leaves little of 〈v′v′〉 to dissipate. Hence, the near-wall dissipation is highly anisotropic.

The most noteworthy features in the 〈w′w′〉-budget are again to be found in the
near-wall region. Production is necessarily absent, and the near-wall balance is
dominated by negative dissipation and a high positive pressure–strain contribution.
The strongly preferential transfer of energy from 〈v′v′〉 to 〈w′w′〉 is important to
highlight, and this is taken to signify the contribution of splatting associated with
reattachment, a process that extends over a substantial proportion of the horizontal
channel wall. As a consequence of this increase in 〈w′w′〉, negative turbulent diffusion
arises, transporting 〈w′w′〉 away towards the wall and to the outer part of the
boundary layer in which all normal stresses feature positive turbulent transport that
supplies the boundary layer with energy from the outer shear layer.

4.6. Position x/h = 8.0

This position lies in the windward portion of the hill where the flow is subjected
to strong acceleration. Profiles of mean velocity and Reynolds stress components in
x, y-coordinates are given in figure 10(g, h). Near the lower wall, the angle of the wall
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relative to the horizontal axis is about 40◦. Hence, u and v are not tangential and
normal to the wall, respectively, and this hinders a physically transparent interpreta-
tion and discussion. Therefore, in the near-wall region, up to a wall distance of about
0.2h, profiles of the wall tangential (t) and normal (n) components are also provided
in figure 11, albeit not along a line normal to the wall but along a vertical line.

From figure 10(g) it can be seen that the overall behaviour of the u-velocity is
similar to that at x/h= 6, but due to the acceleration, the velocity is larger near the
wall and the boundary layer is thinner (only about 0.05h). Except near the lower
wall, the distribution of Reynolds stresses over the full channel height, as plotted in
figure 10(h), is also very similar to that at x/h= 6. However, close to the wall, the
stresses and the corresponding budgets present some exceptional features not observed
at x/h= 6, thus meriting closer consideration. As is seen from figures 10(h) and 11(b),
one such feature is an extremely high level of spanwise stress 〈w′w′〉 relative to the
normal stresses in the (x, y)-plane. This statement retains its validity whether made
in reference to the (x, y) or the (t, n) decomposition. The main difference between the
two is that the wall-oriented decomposition highlights the very rapid decay of wall-
normal fluctuations, as is expected to occur due to wall blocking. While the stresses
in the (x, y)-plane depend on the orientation of the frame of reference, their sum does
not, and it is advantageous therefore to consider the distribution of 〈u′u′ + v′v′〉/2
(included in figure 10h) and later also the budget for this quantity, rather than
the budgets for the individual components 〈u′u′〉 and 〈v′v′〉. For the same reason,
the budget for the cross-correlation of u and v, i.e. for the shear stress −〈u′v′〉,
is not presented here. As seen, 〈w′w′〉 is also extremely high relative to this sum.
Moreover, 〈k〉 shows a distinct near-wall peak, which is evidently a consequence of
the very high near-wall level of 〈w′w′〉. This extreme behaviour is not observed at
other locations, but at x/h= 7 (not shown here), 〈w′w′〉 was already found to exceed
〈u′u′ + v′v′〉/2 very near the wall, indicating that the flow is about to undergo some
drastic modification further downstream.

A comparison of the budgets for 〈w′w′〉 and 〈u′u′ + v′v′〉 at x/h= 8 in figure 14 leads
to the conclusion that the increase in 〈w′w′〉 is due to energy being extracted from the
latter components and fed to 〈w′w′〉 by pressure–strain interaction. This is curious,
as 〈w′w′〉 is already higher than 〈u′u′ + v′v′〉, and thus the observation contradicts the
usually applied concept of pressure–strain interaction tending to isotropize the normal
Reynolds stresses. Hence, models based on this concept must fail here. Interestingly,
this mode of transfer – albeit less pronounced – is also observed in the budgets at
x/h=7 (not shown here), where pressure–strain is by far the dominant source of
〈w′w′〉 everywhere. Both 〈u′u′〉 and 〈v′v′〉 lose energy through this term. Further
upstream, at x/h= 6, pressure–strain is also the dominant source of 〈w′w′〉 close to
and further away from the wall. However, close to the wall only 〈v′v′〉 loses energy
while 〈u′u′〉 gains energy as observed in any flat-plate boundary layer.

Reference to the budget for 〈w′w′〉 shows production and pressure–diffusion to be
zero, as is required by physical constraints. As noted already, pressure–strain is a
major source of gain for 〈w′w′〉. Another is viscous diffusion, the high level of which
is consistent with the requirement that viscous turbulence-energy diffusion should
balance dissipation at the wall. Away from the wall, viscous diffusion reverses and
becomes negative, due to the reversal of the gradient of 〈w′w′〉. This and turbulence
transport largely balance the pressure–strain term and, further from the wall, also the
convection contribution.

The loss of 〈u′u′ + v′v′〉 by the action of pressure–strain interaction, seen in fig-
ures 14(a) and 14(b), has already been noted. This loss is seen to be largely
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Figure 14. Budgets of 〈u′u′ + v′v′〉/2, 〈w′w′〉, and 〈k〉 at x/h =8. Left: principal part of the
channel, right: zoom onto the bottom wall.

compensated by pressure–diffusion, except very close to the wall, where the balance
is increasingly dominated by dissipation and viscous diffusion, as in the case of 〈k〉.
Thus, here, more than at other locations through the flow, the conclusion that is
emerging is that the split of the pressure-fluctuation-containing term into pressure–
strain and pressure–diffusion is somewhat synthetic and not necessarily a good basis
for constructing closures at second-moment level. It is interesting to observe further
that the budgets for 〈u′u′〉 and 〈v′v′〉 at x/h= 8 display extremely large and opposite
levels of pressure–diffusion and pressure–strain, rendering other contributions to the
budget almost insignificant. This is quite different to the budgets of the two stresses at
x/h= 6 and 7, but the difference is due to the Cartesian decomposition relative to the
inclined wall at this location. Hence, it is difficult to provide insightful interpretations
for these stresses individually, and this is the reason for focusing on their sum in the
above discussion.

At this stage it is difficult to provide an unambigous explanation of the precise
mechanisms responsible for the anisotropization of the Reynolds stresses at the bottom
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wall and the windward face of the hill. Apart from the statistical analysis presented
in this section, a detailed analysis of instantaneous structures has been performed
and will be presented in the following section. All information available points to the
dominance of a splatting effect. This is further supported by the results of Perot &
Moin (1995) who investigated near-wall flows with DNS. Their analysis of turbulent
budgets near a solid wall without mean flow also features an anisotropization in the
budget of the tangential Reynolds stress via the pressure–strain term. To some extent,
the present interpretation is also supported by results of simulations of reattaching
backward-facing-step flows (Le & Moin 1991; Dejoan & Leschziner 2003), which also
feature large spanwise stress levels exceeding the streamwise stress. Here, the effect is
perhaps accentuated by the high streamwise velocity in the acceleration region along
the windward face of the hill.

4.7. Anisotropy of the flow

As argued by Lumley & Newman (1977) and Lumley (1978), the local state of the
Reynolds-stress anisotropy,

bij =
〈u′

iu
′
j 〉

〈u′
ku

′
k〉 − 1

3
δij . (4.8)

may be usefully characterized, in a scalar sense, by the second and third invariants

II = −bijbij

2
, III =

bijbjkbki

3
. (4.9)

Because the trace bii vanishes, these two invariants are the only independent scalar
norms associated with bij . Since departure from isotropy appears as a second-order
effect in a (III, II)–diagram, it is often preferred to identify the anisotropy by

ξ =

(
III

2

)1/3

, η =

(
−II

3

)1/2

(4.10)

(Pope 2000). All realizable (physically realistic) states of turbulence lie within the
triangular domain in the (ξ, η)-plane, shown in figure 15. The upper line corresponds
to two-component turbulence, the left-hand line to ‘axisymmetric contraction’ and
the right-hand line to ‘axisymmetric expansion’. This terminology is linked, formally,
to the shape of the Reynolds-stress ellipsoid, the length of its principal axes being
dictated by the eigenvalues of the Reynolds-stress tensor.

A useful third norm, proposed by Lumley, combines II and III to form the ‘flatness
parameter’

A = 1 + 9(III + II). (4.11)

In isotropic turbulence, both invariants vanish, in which case A= 1. The other extreme
condition is two-component turbulence – say at a wall or sharp fluid–fluid interface –
where II = −III − 1/9 so that A = 0.

The value of the above representation lies in its usefulness to turbulence modellers
attempting to construct improved anisotropy-resolving closures. Such closures, espe-
cially at second-moment level, make use of the above invariants to secure the correct
behaviour in limiting (homogeneous) flow states and flow configurations. For example,
observations for fully developed channel flow, derived from experiments and DNS,
show that a traverse from the channel centreline towards the wall corresponds to
a characteristic path in the Lumley triangle, starting in the vicinity of ξ = η = 0
(isotropy), progressing along the ‘axisymmetric expansion’ line (in the log-law region)
and ending in the upper portion of the ‘two-component-turbulence’ line.
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Figure 16. Distribution of the flatness parameter A at different streamwise locations,
x/h = 0.5, 2.0, 6.0, 8.0.

Figure 15 shows the loci associated with traverses across four streamwise locations,
while figure 16 gives corresponding profiles of the flatness parameter A (profiles of II
and III can be found in Jang et al. (2002)). The traverses in figure 15 stop short of the
layer closest to the upper wall, as the turbulence structure is not well resolved in this
region. A first observation is that all states indeed lie within the triangle, as is required
by realisability constraints. In the central region of the channel, covering 80% of the
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flow and identified by the solid squares, the flow is moderately anisotropic, as is also
identified by the value of A being around 0.8. Excluding the 10% near-wall layer,
any deviations from this state occur close to the axisymmetric-expansion line and
correspond, broadly, to the behaviour observed in the log-region of a channel flow. As
the region close to the lower wall is traversed, turbulence is seen to approach the two-
component state at all four locations. However, the manner in which this approach
takes place varies greatly. Within the separation zone and marginally beyond the
reattachment point, the approach occurs mostly along the ‘axisymmetric contraction’
line, signifying a state very different from that in a log-law layer. An exceptional
excursion occurs, however, at x/h= 0.5, and this corresponds to the sharp dip in A

at around y/h= 1 (figure 16). To appreciate the origin of this feature, attention needs
to be directed to the map for x/h= 8. In this, the ξ−η locus covering the near-wall
layer shows a trend towards that characteristic of a log-law region, reflecting the
partial recovery of the flow allowed by the distance between reattachment and the
following hill. The state of the near-wall layer around x/h= 0 is closely linked to that
at x/h=8. The flow then separates slightly further downstream, and at x/h= 0.5 it
contains the separated shear layer that is associated with the attached boundary layer
just upstream of that location. Thus, the excursion at x/h=0.5 appears to be the
footprint of the attached boundary layer prior to separation.

The proximity of the ξ–η locus to the axisymmetric contraction line, especially at
sections x/h= 2 and 6, is reminiscent of that seen in a developed free shear layer
(Bell & Mehta 1990). While the present near-wall flow is clearly not a shear layer,
it is akin to a wall jet which combines a thin boundary layer with a much thicker
outer free shear layer that is only weakly affected by the wall. This equivalence, albeit
qualitative, thus provides an explanation for the behaviour observed in figure 15. A
point of difference is, however, that the anisotropy in a free shear layer is considerably
lower than that in a near-wall layer, so that the former never approaches the two-
component state. In the present case, in contrast, the backward-moving shear flow in
the recirculation region behaves like a thin boundary layer as the wall is approached,
and thus the flow structure has to approach the two-component limit at the wall.

5. Analysis of spectra
5.1. Spectra in the interiour of the flow, general assessment

Time signals of velocity have been recorded in RUN 2 on a dense set of points
spread over the domain. The length of the data set in time is 33.25 non-dimensional
units (tref = h/Ub), corresponding to 29 596 time steps or 3.7 times the nominal flow-
through time Lx/Ub. Using the smaller bulk velocity between the hills yields about
2.5 flow-through times. The time signals were recorded over a duration shorter than
the total averaging (performed within the computation itself) for reasons of economy.
No time signals are available from RUN 1.

The analysis was performed using a windowed Fourier transform with a Hann
window (Press et al. 1992) and segments of length 214 samples, i.e. spanning a length
of 18.4 time units. The full signal was decomposed into four such overlapping segments
over which averaging was performed. Furthermore, signals were recorded for each
(x, y) position at 11 different z-locations over which additional averaging was perfor-
med. These parameters were selected so as to obtain the best possible compromise
between smoothness of the spectrum and width of the frequency window covered.
Figure 7 shows the points where spectra were computed. They were chosen so as to
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Figure 17. Power spectrum density of one-dimensional spectra of the three velocity
components: (a) in the centre of the recirculation zone at x/h = 2.15, y/h =0.49, (b) in
the centre of the shear layer at x/h = 2.23, y/h = 1.13 (see figure 7). The dashed line has a
slope of f −5/3. The small vertical line in (b) is at fCDS = 4.7 as discussed in the text.

cover all characteristic areas in the flow, but only the most relevant ones are discussed
in this section.

Attention is first focused on the issue of numerical resolution, some aspects of
which have already been considered in § 3.3.3. Figure 17 shows the power-spectrum
density at two points with different characteristics. Both spectra were recorded around
x/h= 2, one in the centre of the recirculation region and the other in the shear layer.
For the former 〈u〉 ≈ 〈v〉 ≈ 0, whereas 〈u〉 =0.73 for the latter. These spectra exhibit
several distinct ranges: low frequencies around the inverse of the flow-through time,
i.e. around 0.1, a middle region of regular decay, and a high-frequency region of
faster decay. Checks were performed to verify that, except for some near-wall spectra
discussed below, all other spectra computed at the points shown in figure 7 have
characteristics between the two extremes displayed in figure 17. All components show
the same spectrum, reflecting an isotropic distribution of spectral energy, except at
very low frequency.

In the spectrum of figure 17(a), a regular decay of slope close to −5/3 is observed
over more than one decade in f . This is indicative of an inertial subrange, a necessary
condition for the flow to behave like locally isotropic turbulence. For higher frequen-
cies, a smooth transition to a faster decay is observed, related to the effective filter of
the LES. The present spectra are spectra in time. They can be related in most circum-
stances to spectra in space by means of Taylor’s hypothesis. However, this requires the
average velocity to be substantially larger than the fluctuations which is not the case
for the particular point under consideration in the centre of the recirculation zone.

The second spectrum, figure 17(b), exhibits the same type of ranges discussed above.
In contrast, however, a pronounced change of slope is observed at f = 4.7. This can be
explained by the characteristics of the second-order central scheme employed for the
convective term. The scheme has a modified wavenumber ξeff = sin(πξ/ξmax) in space,
exhibiting a maximum at ξmax/2 = 1/(4�x) (Ferziger & Peric 1996). Any contribution
with spatial wavenumber larger than this value is not adequately transported in space.
Employing Taylor’s hypothesis for this point is possible, subject to uncertainty arising
from the relatively low mean velocity, 〈u〉/〈u′u′〉1/2 ≈ 3 where the signal was recorded.
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Figure 18. Two u-signals in the outer flow at y/h = 2 and the same z-location, one at
x/h = 2.2 (dashed line), the other at x/h = 8.0 (solid line).

Hence, the critical frequency in time is fCDS = 〈u〉/(4�x), which is 4.7, indicated by the
short vertical line on the graph in figure 17(b). The physically meaningful range of this
spectrum therefore extends up to fCDS. Similar observations were made by Schmitt,
Richter & Friedrich (1986). An approximate relationship to the Kolmogorov length
discussed before can be established by observing that the maximum resolvable spatial
wavelength at the present point generates the temporal frequency f� = 〈u〉/(2�x)
and �/η ≈ 10. The temporal frequency related to η would then be around 94. Note
that these considerations are not applicable to the spectrum in figure 17(a) because
〈u〉 ≈ 〈v〉 ≈ 0.

The most important criterion for assessing the quality of resolution in a simulation
is the ratio between the energy content of the most energetic modes and the ones
with the highest physically meaningful frequency. In the present simulation, this is
about two decades in the most critical area near the crest of the hill, indicative of a
good resolution by the grid and method employed.

Attention is turned next to the low frequencies in the spectra. Two representative
time signals are given in figure 18. These were recorded in the outer flow at a stream-
wise distance of 6h on the same average streamline and at the same spanwise position.
Low-frequency undulations are visible in these signals. Animations of the whole flow
field show that, at certain instances, turbulent fluctuations ‘accumulate’ in some regions
before they are ‘swept’ away. The two-point correlation coefficient R11 between the two
u-signals considered is only −0.085. Similar values were observed at other locations.
This indicates that the strong fluctuations are of substantially smaller size than
the distance between these points. The low frequencies of around 0.1 are therefore
principally due to the return time of the periodic flow, as illustrated by the limiting
case of frozen turbulence advected in a plane channel. The length Lx of the domain
in the streamwise direction is therefore sufficient, because the size of the dominating
vortex structures in space is substantially smaller than Lx .

5.2. Spectra for near-wall points

By means of the spectra in figure 19, further insight can be gained into the anisotropy
in the Reynolds stresses observed close to the wall at x/h= 8. The figure shows spectra
at four near-wall locations, at about x/h= 0, 4.5, 6, 8 and a distance of 0.09, . . . , 0.1h

from the wall. The fourth was selected to be somewhat closer to the wall, at a



LES of flow in a channel with periodic constrictions 51

10–5

10–1 100 101

10–4

10–3

10–2

10–1

100

(a)

(c)

(b)

(d )

10–5

10–1 100 101

10–4

10–3

10–2

10–1

100

10–5

10–1 100 101

10–4

10–3

10–2

10–1

100

10–5

10–1 100 101

10–4

10–3

10–2

10–1

100

Evv

Euu

Eww

0.05f –5/3

f f

Figure 19. Power spectrum densities at several near-wall locations: (a) x/h =0, (b) x/h = 4.5,
(c) x/h = 6.0, (d) x/h = 8.1 (see figure 7). The distance from the wall is 0.09h–0.1h for the first
three and about 0.06h for the fourth. The dashed line has a slope of f −5/3.

wall-normal distance of 0.06h, because of the reduced thickness of the boundary
layer at this location. The limiting frequency fCDS is relevant only for the first of these
spectra, for which 〈u〉 ≈ 1. At the other points the streamwise velocity is substantially
lower.

Figure 19 shows that all temporal fluctuations with frequency larger than 1 feature
similar, isotropic decay in their power spectra. The most interesting range is that
containing the low frequencies. At x/h= 4.5, these components are large for u and w,
and small for v, with equal energy in u and w. Further downstream, at x/h= 6 and
x/h= 8, a substantial level of anisotropy gradually develops for frequencies in the
decade f = 0.06–0.6. The energy content in the w-fluctuations increases substantially
compared to the other two components, reaching a ratio of up to 10 at x/h=8
for f = 0.1. The anomaly in the spectrum persists until the crest of the hill, which
is revealed by the corresponding spectrum for x/h= 0. Due to the pronounced
acceleration, the energy in the u-component increases as the flow progresses from
x/h= 8 to 0, while w and especially v diminish. Downstream of the crest, the domi-
nance of the w-fluctuations in the low-frequency range is reduced substantially, as is
revealed by the spectra at around x/h= 2 in the shear layer shown in figure 17. The
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(a)

(b)

Figure 20. Vector plots in a vertical plane aligned with the x-direction: (a) instantaneous
flow, (b) average flow. An arrow is shown at every fifth grid point, horizontally and vertically.

near-wall spectra at this x-position (not included here) also exhibit this reduction.
These observations support the earlier discussion. Furthermore, the spectra show
that the dominance of w-fluctuations is a comparatively slow effect. It is related to
temporal periods of, typically, 5 to 10 time units.

6. Analysis of instantaneous flow structures
6.1. Unsteadiness of the flow

In this section information is provided about the instantaneous flow and its complex
physical behaviour in terms of structural features. This allows an explanation of
certain observations made earlier in the discussion of statistically averaged quantities.
The vortex structures in different flow regions will be described with reference to
several instantaneous quantities, which were derived from RUN 1.

First, two plots of velocity vectors in a vertical plane are shown in figure 20, part
(a) being an instantaneous snapshot and part (b) representing the time-averaged
field. The comparison conveys an impression of the large-scale dynamics at play and
the high level of turbulence which is clearly different from what was found in the
computations for low-Reynolds-number flow over wavy-wall geometries (Calhoun &
Street 2001; Zedler & Street 2001). The unsteady activity is especially pronounced in
the recirculation region and at the windward foot of the hill. The intense irregularity
of the flow presents a substantial challenge to its analysis and the extraction of
ordered structures. In the reattachment region, as well as along the windward slope
of the hill, a substantial portion of high-velocity fluid is directed towards the wall,
an observation revisited later. The vector plot of the average flow illustrates well
the strong acceleration along the windward slope of the hill, resulting in a very thin
boundary layer and a velocity overshoot near the crest.
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Figure 21. Typical snapshots of the instantaneous velocity near the bottom wall, values taken
at the fourth grid point from the wall: (a) streamwise velocity component with all negative
values being removed, (b) spanwise velocity component.

The high irregularity of the flow manifests itself also in large variations of separa-
tion and reattachment loci. In fact, the concept of a single line of separation or reatta-
chment, while pertinent to the average flow, is not meaningful for the instantaneous
flow separating from a smooth wall (Na & Moin 1998). This is demonstrated by the
plot in figure 21(a) which shows an instantaneous picture of the streamwise velocity
very close to the bottom wall. The removal of negative values from the data shows
that forward and backward flow occur in a spotty manner. Instantaneous forward
flow appears in the recirculation region and substantial backflow is observed well
beyond the average reattachment point – in fact, almost everywhere in the domain
except on the upper half of the hill’s windward face. A reattachment ‘line’ cannot be
identified as such. Animations reveal that the locations of forward and backward flow
also change in highly irregular fashion in time. Instantaneous separation is confined
to a smaller region than reattachment, due to the convex wall curvature, but still
occurs over a distance of −0.1 � x/h � 0.7. A statistical quantification was obtained
by evaluating an intermittency coefficient, here defined as the temporal percentage of
time at which the u-velocity is negative. Within the recirculation zone, close to the
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Figure 22. Instantaneous iso-surface of the pressure perturbation p′.

wall, its value varies from 90% at x/h= 3 to around 50% at the hill cest and the
nominal reattachment location and vanishes at the windward face of the hill beyond
x/h=8.4 before again increasing towards the crest.

6.2. Vortex systems

Figure 22 shows a three-dimensional iso-surface plot of the instantaneous pressure
fluctuations p′. Pressure fluctuations were found to be better suited than the pressure
itself to elucidate structures, because the spatially variable mean pressure tends to
obscure structures in certain regions. Animations have been created to support the
interpretation presented below.

In the shear layer downstream of the crest of the hill, spanwise vortices are observed,
which are generated through Kelvin–Helmholtz instability (label KH1). While these
vortices have a size of the order of the boundary-layer thickness at the crest of the
hill, they rapidly grow until they reach a diameter of about one hill height (label
KH2). On the other hand, figure 22 shows that these ‘rollers’ do not extend over
the whole spanwise domain. First, their formation does not take place uniformly,
since the flow at the separation point is turbulent, with streamwise vortices swept
over the crest of the hill contributing to their disruption. Second, these vortices break
up further downstream due to secondary instabilities, a feature which is commonly
observed in bluff-body flows, e.g. around cylinders (Zdravkovich 1997). This process is
related to the generation of streamwise vorticity and streamwise elongated structures
which are inclined with respect to the x-axis in vertical direction, as revealed by the
w-fluctuations shown in figure 23(b). These structures are frequently ‘trapped’ in the
recirculation zone and swept back to the separating shear layer, where they can trigger
irregularities in the separation and roll-up process. Another type of vortex (labelled
HP in figure 22) appears occasionally between the major Kelvin–Helmholtz rollers.
Pictures of p′-iso-surfaces, as in figure 22, but viewed from above (not included here),
support observations derived from plots such as figure 22, namely that these vortices
are inclined with respect to the x-axis, but horizontally in preference. They are related
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Figure 23. Generation of inclined vortex structures. (a) Average deformation determined by
the principal axes of the average deformation tensor. Represented is the direction of the first
eigenvector related to local stretching, the length is unity. Contour lines have been placed at
σ1 = 0.05 (dashed) and σ1 = 0.1 (solid). (b) Instantaneous spanwise fluctuations in a vertical
plane. The range has been reduced from ± 1.3, comprising the extrema, to ± 0.5 and straight
lines have been introduced to enhance visibility.

to a helical pairing of the principal spanwise vortices and are, in fact, commonly
observed in mixing layers or in the flow behind a backward-facing step (Silveira-Neto
et al. 1993). Further downstream, in the reattachment region, the core flow is quite
irregular, but occasionally exhibits streamwise vortices like the one labelled S in
figure 22. In the windward region of the hill, the wall is concave, which makes the
flow prone to the development of streamwise vortices due to the Görtler instability.
Indeed, vortices of this type are observed in the present case (labelled G in figure 22),
but another interpretation is possible as discussed below.

Through secondary instabilities, the spanwise Kelvin–Helmholtz-type vortices in the
shear layer yield streamwise vortices as indicated above. Further downstream, their
preferential orientation is in x-direction, but they are inclined in the vertical direction
as revealed in figure 23(b) by way of instantaneous w-fluctuations. Beyond x/h ≈ 3,
these structures still evolve, mainly due to the action of the mean velocity. The latter
exhibits a strong vertical gradient, as illustrated by the vector plot in figure 20 and
the profiles in figure 10. This is related to a pronounced average spanwise vorticity
of the same sign across the flow domain, except in the vicinity of the upper wall. As
a consequence, the streamwise structures, highlighted in figure 23(b) by straight lines,
exhibit a tendency to turn in a clockwise direction. During this process, their lower
end is retained in the low-speed region and can even be transported in the upstream
direction by the recirculating flow. As for any flow, the two-dimensional average
flow can be decomposed into translation, rotation (just discussed), and deformation.
The deformation introduced by the mean flow is highlighted in figure 23(a) using
the principal axes of the average deformation tensor (Wu & Durbin 2001). Both
eigenvectors are orthogonal and the corresponding eigenvalues are of the same



56 J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman and M. A. Leschziner

3
(a)

2y
—
h

1

0 1 2 3 4

3
(c)

2y
—
h

1

0 1 2 3
z/h

4

3.09
u

2.39
1.68
0.97
0.27

–0.44

2.43
u

1.90
1.38
0.88
0.33

–0.19

3
(d)

2

1

0 1 2 3

streak

z/h
4

2.40
u

1.87
1.35
0.82
0.30

–0.22

3
(b)

2

1

0 1 2 3 4

2.42
u

1.75
1.09
0.42

–0.25
–0.91

Figure 24. Instantaneous velocity in planes of the grid with constant streamwise index i:
(a) x/h =0.05, (b) x/h = 2, (c) x/h = 6, (d) x/h =8 where equality holds approximately
only due to the inclinations of the grid lines in vertical direction. Vectors are composed of
the instantaneous v- and w-components. They are located at every fifth grid point in the
horizontal and vertical directions, respectively. The grey scale shows the streamwise velocity
with levels adjusted to the extrema in the respective slice.

magnitude but opposite sign due to continuity. The vectors in figure 23(a) have
unit length and point in the direction of the first eigenvector, related to the positive
eigenvalue and hence local stretching. Compression by the same amount is applied
in the orthogonal direction so that the second eigenvector field need not be displayed
here. Two contours in this picture indicate where the first eigenvalue, σ1, is larger than
0.05 and 0.1, respectively. The latter covers mainly the separating shear layer and the
region just ahead of and along the windward face of hill. Hence, while transported
downstream, the inclined structures are stretched in longitudinal direction.

The process of rotation and stretching has important consequences for vortices not
already aligned with the principal axes of the average deformation tensor. It has been
observed, in animations of iso-p′ surfaces, e.g., that vortices of predominantly spanwise
orientation, with one end slightly lower than the other, are turned to become oriented
according to the axis of average stretching. This is the reason for the preferrential
orientation of vortices observed over the downstream half of the domain.

6.3. Streamwise structures

As a result of the mechanism described above, streamwise structures (identified
through w-fluctuations) are observed at the bottom wall, which are the footprints of
those in the interior of the domain. They are visible in figure 21(b) in both the recir-
culation and post-reattachment region and examples are labeled R and A, respectively.
Figure 24 provides further information on the near-wall streamwise structures. It
shows snapshots of instantaneous velocity in nearly vertical grid planes (planes with
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Figure 25. Spanwise auto-correlation functions at x/h =6, obtained from RUN 2 over a
period of 33 non-dimensional time units and four distances from the wall: (a) y/h = 0.00161,
(b) y/h = 0.02247, (c) y/h = 0.2179, (d) y/h = 1.01. The curves represent the correlations of
the u-fluctuations, R11, of the v-fluctuations, R22, and of the w-fluctuations, R33, respectively,
as a function of the spanwise separation rz/h.

constant streamwise index i). The grey scale represents the streamwise velocity com-
ponent. In the plot for x/h= 2, located in the recirculation zone, ordered structures
can hardly be discerned, although pressure surfaces show that the velocity field is far
from random. In the plot for x/h= 6, several high- and low-speed regions are
observed, and the vectors show vortical structures. These are confined to the trough,
i.e. to y/h= 0–1 and have a width of about 0.5h–1h. In order to convey this in
quantitative terms, correlation coefficients of all velocity components have been
computed as a function of the spanwise separation rz/h at x/h= 6 and at four
distances from the wall. These are given in figure 25. Plots (a–c) are for the near-wall
flow, up to y/h= 0.22. In these, the correlation length for the wall-normal velocity
v is substantially smaller than those for the other velocity components, as revealed
by the faster decay near the origin and the zero crossing at low rz/h values. The
correlation of the u-component near the wall is substantially larger than that of the
other components, and coherence increases with wall distance. The correlation of the
w-fluctuations, on the other hand, is small at the wall but increases above it such that
a variation similar to that of the u-fluctuations is observed at y/h= 0.22.

Consideration is next given to the region at hill height and above. The inclined
structures in figure 23 typically extend up to about x/h= 2, and hence should have
an impact in this region away from the wall. The structures even extend well above
the hill crest, as seen in figure 23. At low Reynolds numbers, Street and coworkers
(Calhoun & Street 2001; Zedler & Street 2001) show pronounced streamwise vortices
over the crests of the hills in the ‘wavy-terrain’ configuration. Salvetti et al. (2001) find,
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Figure 26. Instantaneous fluctuations in horizontal planes y/h = 2 (a, b) and y/h = 1 (c, d).
Left (a, c): streamwise fluctuations u′, Right (b, d): normal fluctuations v′ for the same instant.
To enhance clarity, negative values have been discarded.

at a higher Reynolds number, similar structures in this configuration when considering
the normal fluctuations v′ in horizontal planes at about one half of a hill height over
the top of the hill crest. In fact, such observations were first made by Gong et al. (1996)
and explained as being a cosequence of a Craik–Leibovich type-2 instability (Phillips &
Wu 1994; Phillips, Wu & Lumley 1996). To investigate whether similar structures arise
in the present geometry, instantaneous data were extracted across several planes at
constant y values. Figure 26 shows a plot of v′ at y/h= 1 (hence touching the hill
crest) and at y/h=2. The plotting style is similar to the one used in Gong et al.
(1996) and Salvetti et al. (2001), so that a qualitative comparison with these results
for a sinusoidal bottom wall is possible. The corresponding u′-fluctuations are also
included in figure 26. The latter exhibit large streamwise structures which become
evident when negative contours are suppressed. The v′ fluctuations do not show
the same pronounced streaky behaviour as in Gong et al. (1996) and Salvetti et al.
(2001), but are substantially more irregular. Comparing u′ and v′ in figure 26 suggests
that positive v′ is correlated with negative u′ which is especially evident along the
windward slope of the hill at x/h ≈ 6–8. Arrows to sample structures have been
inserted to make the correspondence more visible. This correlation is substantiated
by the Reynolds stresses displayed in figure 10. Based on these data, the one-point
correlation coefficient Ruv has been computed. It is negative and its magnitude is larger
than 0.4 for y/h= 0.4–2.1 at x/h= 6, and for y/h= 0.8–2 at x/h= 8, for example.
In plots similar to the ones in figure 26, but obtained closer to the wall (not included
here), the structures seen in figure 26 persist but become shorter and narrower,
increasingly resembling the view of the near-wall region provided by figure 21. Further
away from the wall, for y/h> 1, the fluctuations become increasingly attenuated, as
revealed by the plots at y/h= 2 in figure 26 and the statistical data in figure 10. To
some extent, the streaky patterns can still be perceived in these plots. In comparison
to the results of Salvetti et al. (2001), obtained at a Reynolds number similar to the
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present one, it is thus found that, for the present substantially larger distance between
consecutive constrictions and because of the lower channel height, the generation of
streamwise structures in the outer region above the hill crest is considerably reduced.

The streamwise structures away from the bottom wall can also be recognized in
figure 24. The snapshot at x/h=2 does not reveal a particular organization, but
the fluctuations in the shear layer are quite vigorous. At x/h= 6 and 8, an area of
positive u-fluctuations, occupying about one third of the domain, can be observed.
The spanwise correlations at x/h= 6, y/h= 1 in figure 25 address this issue in an
average sense. The correlations of the v-fluctuations, R22, level off to zero around
rz/h= 1, and R33 behaves in a similar manner, being somewhat larger near the origin.
The u-correlation, R11, equals R33 until rz/h ≈ 0.7 and shows negative values of about
−0.2 for large rz/h. Hence, the correlations of the u-fluctuations are increased over a
larger distance than those of the other components, while the fluctuations themselves
are about twice as intense, as revealed by the Reynolds stresses in figure 10(f ).

At the time of completing the present manuscript, a study by Günther & von Rohr
(2003) reported streamwise u-velocity streaks above the hill crests in experiments
on a wavy wall at Reh = 7300 and λ/h= 10. These results thus also support the
present findings. The spanwise period of the u-fluctuations in Günther & von Rohr
(2003) is 1.5λ=15h, which is substantially larger than observed here. However, their
measurements were conducted with a distance of 9.5h between the hill crest and
the upper wall, in contrast to 2.05h in the present case. It is as yet unknown how
this parameter influences the size of these structures, but some scaling involving the
channel height must be expected.

6.4. Structures near the windward face

The analysis of the Reynolds stresses at x/h= 8 in figure 10(h) and figure 11(b) and
their budgets in figure 14 revealed the dominance of fluctuations in the spanwise
direction associated with the transfer of energy to this component by the pressure–
strain term. First signs of this process can already be observed at x/h= 6, where
the pressure–strain term Φ33 dominates around y/h= 0.01 (see figure 13f ), which is
accentuated at x/h= 7 (budget not shown here) and becomes substantially stronger
at x/h= 8 (figure 14d). To further elucidate this process, attention is focused on the
instantaneous flow structures in this region. This has been done by animations of p-
and p′-iso-surfaces, of u, v, w in (x, y)-planes and of transverse velocity-vector fields
in (z, y)-planes, similar to the snapshots in figure 24.

A general view obtained from these visualizations is that, as seen in figures 22 and
23, elongated inclined structures occur and impinge on the windward face of the hill,
such as the one downstream of S in figure 22. Their cross-section is roughly circular
so that they cannot be the origin of the dominant w-fluctuations observed.

As demonstrated in the previous section, the streamwise velocity exhibits broad
streaks at the height of the constrictions and above. In figure 24, such a streak of
width about 1.5h impinges the windward slope of the hill at x/h= 8 around z/h =2.7.
It generates strong bi-directional spanwise motions over a relatively large distance.
This is seen in figure 21(b) by the pair of positive and negative w-fluctuations labelled
S. Such an event, defined by a local region of stagnation-point flow resulting from
fluid impinging on a wall, is termed a ‘splat’ (Perot & Moin 1995). A zoom of this
region is shown in figure 27, with pressure fluctuation and instantaneous velocity
vectors illustrating that this is indeed a splat event. Since the impinging fluid is forced
to change its direction due to the impermeability condition at the wall, tangential
motion is created so that kinetic energy is transferred from the normal component
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Figure 27. Pressure fluctuations and instantaneous velocity vectors for the same instant and
grid plane as in figure 21, zoomed around the splat event observed in these plots.

to tangential ones. Due to continuity, so-called ‘anti-splats’ are generated close to
this structure, which transport fluid back into the core of the flow. Such events are
visible in figure 24 for x/h= 8 at z/h = 1.0 and 3.5. The picture in figure 24 reveals
that the anti-splats can be quite narrow, as observed, for example, near z/h = 3.5.
Animations show that this type of motion can persist for periods of the order of
0.5 times the flow-through time, which results from the large streamwise extent of
the streaks in u, as observed in the horizontal cut in figure 26. The iso-pressure or
iso-pressure-fluctuations, on the other hand, do not show these events, since streaks
in the u-component alone, without substantial vorticity, do not create pronounced
pressure minima. Splats and anti-splats were investigated in great detail by Perot &
Moin (1995) who studied the interaction of turbulence with a wall in a stagnant body
of fluid. In the present case, the situation is complicated by the strong mean tangential
flow and the curvature of the boundary. This introduces a pronounced asymmetry
between the w-fluctuations and those of u or, where the wall is inclined, those of the
tangential component in streamwise direction.

To complete these observations and support them by statistical information, the
spanwise auto-correlation of all velocity components has been computed at x/h= 8
and is shown in figure 28. Both R11 and R22 exhibit similar shapes and decay to zero
within a distance of h without negative parts. It should be recalled, however, that u

and v are not tangential and normal to the wall, respectively, at this location and that,
hence, R11 and R22 are intimately coupled. Considering corresponding correlations at
x/h=6 and 8, at the same wall distance (figures 25 and 28) shows R11 and R22 at
x/h=8 to have a similar shape to R11 at x/h= 6. In contrast, the spanwise correlation
R33 undergoes a substantial quantitative and qualitative change between x/h= 6 and
8. Thus, R33 develops larger values for small separation rz/h and stronger negative
values for large separation. The shape around rz/h= 0.5 changes from concave at
x/h=6 to linear and, for (y − yw)/h= 0.269, even slightly convex at x/h= 8. With
increasing wall distance, the zero crossings of R33 at x/h= 8 move further away from
the origin (from about 0.65h to about 0.95h), and the negative values for large separa-
tion become more pronounced up to a distance of (y − yw)/h= 0.269. This trend is
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Figure 28. Spanwise auto-correlation functions at x/h = 8 determined in the same way as the
data in figure 25 at four distances from the wall: (a) (y − yw)/h =0.0027, (b) (y − yw)/h =0.029,
(c) (y − yw)/h =0.269, (d) (y − yw)/h =0.558, y/h = 1.00. The curves represent the correlations
of the u-fluctuations, R11, of the v-fluctuations, R22, and of the w-fluctuations, R33, respectively.

somewhat reversed for larger distances, as observed in the picture at (y − yw)/h=
0.558. While the correlation data still exhibit some sampling error giving non-
vanishing values at rz = Lz/2, the data for R33 at x/h= 8 are non-negative at rz = Lz/2
for physical reasons which possibly calls for a domain wider than the present one
with Lz = 4.5h. This issue has been discussed in § 3.3.4 above which examines the
influence of spanwise width.

Animations in planes x/h= 6, 7, 7.5, 8 show increasingly vigorous near-wall events
with increasing streamwise coordinate, characterized by large spanwise motions. A
snapshot is shown in figure 24(d). Simultaneously, the spanwise length scale of the
streaks in the u-velocity component increases significantly. The resulting positive
and negative spanwise motions resulting from this impingement typically exhibit a
separation of about 1.5h, which is reflected by the behaviour of R33 in figures 25 and
28. Since at x/h= 8 the wall is elevated by about half a hill height above the points at
x/h= 6 and 7 located in the trough, this is in line with the discussion of streamwise
structures in the previous section, where an increase in the size of the streaks with
elevation from the bottom to a width of about this size has been observed. Associated
with the large length scales in the streamwise direction is a large time scale. Thus,
time-integration of the cross-sectional velocity fields at x/h= 8 shows large structural
features to persist for periods of the order of half a flow-through time. Of course, as
time progresses, the average spanwise motions decline towards zero.

Beyond x/h= 8, the flow accelerates further along the windward slope of the hill.
Over the crest, some vortical activity in v and w is visible as shown in the plot for
x/h= 0.05 of figure 24. The near-wall fluctuations in u are very small, however, and
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confined to the close vicinity of the wall. The thickness of this layer is about 5% of
the hill height only, as substantiated by figure 10, so that it can hardly be resolved in
this plot.

Finally, the question is addressed as to whether the large spanwise fluctuations
may be due to streamwise Görtler vortices on the concave upslope wall. In Gong
et al. (1996) and Phillips et al. (1996), the possibility of the observed streamwise
structures being generated by a Görtler instability is discussed, but immediately ruled
out, mostly by qualitative arguments. On the other hand, Calhoun & Street (2001)
conclude that this mechanism is important in the formation of streamwise vortices
in their LES of flow over wavy boundaries at very low Reynolds number. They
determined the distribution of the Görtler number, expressing the ratio of curvature
to viscous effects, and found that the maximum of this number in front of the hill
corresponded to the inception of the streamwise vortices. The Görtler number in
Calhoun & Street (2001) has been computed from the present data, and the iso-lines
look similar to the ones in Calhoun & Street (2001), but the maximum in front of the
hill is located closer to the wall. This indicates that Görtler vortices also exist in the
present flow, as seen in figure 22. However, as in Calhoun & Street (2001), these are
likely to have a cross-section of circular shape and a diameter substantially smaller
than h. Hence, they cannot be associated with the cross-sectional motion shown in
figure 24 at x/h= 8 and cannot be responsible for the large spanwise fluctuations
seen there. We conclude that these are mainly due to the splatting effect.

7. Conclusions
The most distinctive feature of this study is the wealth of statistical and structural

information derived from two independent simulations for a flow that is, without
question, physically complex, is pertinent to fluids-engineering practice and is free
from uncertainties posed by inlet and outlet boundary conditions. The possibility that
the restriction of the domain to a single streamwise periodic segment could have
unduly constrained the turbulence structure close to the periodic boundary was effec-
tively discounted by test computations for a domain spanning two periodic segments.
Likewise, test computations with an increased distance between the spanwise
boundaries indicate that any adverse effects arising from spanwise constraints are
minor. This fact and the closeness of the two independent solutions obtained justify
the claim that the accuracy of the results is good. Nevertheless, if costs were not an
issue, a more extensive simulation domain, notably in the spanwise direction, would
have been used. The cost of a simulation for a domain spanning two periodic segments
and 7 hill heights in the spanwise direction, with the same resolution quality, is
estimated to be about 200 000 CPU hours on a Cray T3E computer.

The fact that the present flow features separation from a curved surface, recircula-
tion, reattachment, recovery and strong acceleration within a statistically homoge-
neous spanwise domain, makes the flow close to an ideal generic test case for statistical
closures intended for modelling separated flow. Indeed, the results contained in this
paper have already been widely exploited, both within individual validation studies
and as part of broader workshop exercises directed towards modelling complex
turbulent flows (Jakirlić, Jester-Zürker & Tropea 2001; Manceau & Bonnet 2003).
The inclusion of budgets for all Reynolds-stress components for a fully turbulent
separated flow bounded by a highly curved wall is another exceptional aspect of the
present study. Not only do the budgets enhance the interpretation of the behaviour
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of the stresses in relation to mean-flow and structural features, but they also provide
a substantial aid to model validation and development.

While the statistical data demonstrate many familiar interactions – such as the close
relationship between high strain generation and high stress in the separated shear
layer – they also reveal a number of unfamiliar, indeed intriguing, features, especially
close to the lower wall at which the flow separates and reattaches. Perhaps the most
interesting finding is the very high level of spanwise turbulence intensity in the post-
reattachment zone, especially when the flow encounters the windward side of the
hill. Consistently, the budgets show that pressure–strain interaction diverts energy
from both the wall-normal and streamwise components to the spanwise component,
although the first two are lower than the last. In-depth analysis, based on visualizations
and the examination of the flow structure, revealed these to be a result of ‘splatting’ of
large-scale eddies originating from the shear layer above the recirculation zone. This
feature is one that cannot even be resolved by second-moment closure, for the process
is not compatible with isotropization-driven redistribution of turbulence energy. A
further conclusion emerging from the budgets is that the separation of pressure–
velocity interactions into pressure–strain and pressure–diffusion contributions is rather
synthetic and can be misleading, in so far as the two components are large, both in the
separated and the post-reattachment regions, have opposite signs and thus dominate
the near-wall budgets of the shear stress and the wall-normal intensity. It is concluded,
therefore, that this separation is not advantageous as a basis for constructing or
improving turbulence models. The presentation of the stresses in terms of the second
and third anisotropy invariants, forming the invariant map, shows all states to
comply with Lumley’s realizability constraints. In the invariant map, the near-wall
flow is found to approach the two-component state along the locus associated with
‘axisymmetric expansion’. This locus is normally populated by states along a free
shear layer, and this is taken to imply that the near-wall layer is dominated by
a structure that it inherits from the separated shear layer which feeds fluid to the
near-wall region, both within the separated zone and the post-reattachment region.
Only well beyond reattachment is there an indication that the near-wall layer begins
to acquire properties akin to those of a log-law layer. Over most of the flow, the
near-wall layer is very far from that in an attached flow.

The examination of unsteady features and instantaneous realizations show the flow
to be highly disturbed in several respects. First, the position of the separation line
varies greatly in time, from slightly upstream of the hill crest to about 0.5 hill heights
downstream. Similarly, reattachment is highly unsteady and the flow contains large-
scale unsteady structures. As noted already, one prominent structural feature identified
is ‘splatting’ – the generation of large wall-parallel fluctuations by large-scale eddies
impinging on the wall in the reattachment and post-reattachment regions. The identi-
fication of other structures, by way of a range of structure-identification methods,
turned out to be a difficult undertaking, mainly because of the high Reynolds number
of the flow. One interesting outcome, arising from the juxtaposition of structural
features with the strain field, is that the oblique inclination of vortices in the shear
layer above and downstream of the recirculation zone is linked to the orientation
of the principal axes of the average deformation tensor, a relationship which does
not appear to have been identified before in separated flow. In the shear layer,
spanwise rollers originating from Kelvin–Helmholtz instability have been identified,
and these are observed to grow to a size of order of one hill height. Also found
were braid-like vortices between these rollers, which tended to be swept back by the
reverse flow of the recirculation zone. Hence, the present study has contributed to the



64 J. Fröhlich, C. P. Mellen, W. Rodi, L. Temmerman and M. A. Leschziner

understanding of many of the complex interactions playing a role in any turbulent
separated flow.

Although it is now possible to undertake DNS studies for the flow considered herein,
such studies would still be extremely costly, requiring approximately 50 million nodes
and CPU resources about 50 times larger than those expended here. The benefit of
doing so would be modest, however, except in so far as it would allow dissipation
and other processes that are sensitive to the smallest scales to be captured explicitly.
It could be argued that a much better investment of such resources would be directed
towards highly resolved LES at higher Reynolds numbers and larger extent in the
spanwise direction.
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